基于改進權(quán)重計算的協(xié)同過濾算法研究
[Abstract]:Since the beginning of the 21st century, Internet technology has developed rapidly. With the popularity of the Internet, e-commerce has gradually risen, and network information dissemination has also been greatly developed. Personalized recommendation technology emerges as the times require. It is one of the effective ways to solve the above problems. Its function is to recommend products that users may be interested in by collecting and analyzing users'historical browsing information. As the core of the whole recommendation system, recommendation algorithm has become a hot research direction in recent years, because the recommendation results are closely related to the performance of the recommendation algorithm. The techniques and algorithms used to personalize the recommendation requirements are complex and varied. At present, there are about four kinds of recommendation algorithms: content-based recommendation algorithm, collaborative filtering recommendation algorithm, hybrid recommendation algorithm and network recommendation algorithm. One of the more successful technologies in the field of application is to use collective wisdom to discover a small number of users with similar interests and hobbies, namely "neighbors". According to the analysis and recording of other content that these "neighbors" like, a catalog with ranking is generated, which we call recommendation results, and recommendation results are obtained. Pushing to this group of users reduces the workload of the user's "selection" process to a certain extent. The traditional collaborative filtering algorithm does not consider such factors as user's behavior time or the same label between items in the similarity calculation, but directly uses the user's score for similarity. Sexual computing, which exposes such as cold start-up problems, sparse matrix problems, recommendation scalability problems, and so on, leads to the recommendation results are not accurate enough to meet the actual needs of users. This study is based on the Project-based Collaborative Filtering algorithm, the user behavior time and the project itself. Information such as tag attributes is included in similarity calculation to improve the cold start problem of new users or new products, and then improve the quality of recommendation results, satisfy the actual needs of different users as much as possible, and realize personalized recommendation service. The behavior time generated by news, short video and other information is introduced into the data set. When calculating the similarity between items, the time factor is integrated into the heat score of resource heat through the pretreatment of time attenuation function, and then the item-based collaborative filtering recommendation is carried out. Secondly, the new items are not suitable for the new ones. Recommended weights are used to introduce short video labels into similarity computation by using the tagging feature of short video items. Since short video labels are pre-defined before publishing, the spatial cosine similarity (Cosine Similarity) of the labels is calculated after extracting the short video labels. Finally, an experimental scheme is designed based on the user's log of the actual implementation of the information APP. The proposed scheme is validated by comparing the recommendation results of the classical collaborative filtering algorithm with the improved collaborative filtering algorithm. Experimental results show that the improved collaborative filtering algorithm improves the cold start problem of new users or new products, and the recommendation accuracy is improved to a certain extent.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 徐義峰;陳春明;徐云青;;一種基于分類的協(xié)同過濾算法[J];計算機系統(tǒng)應(yīng)用;2007年01期
2 楊風召;;一種基于特征表的協(xié)同過濾算法[J];計算機工程與應(yīng)用;2007年06期
3 王嵐;翟正軍;;基于時間加權(quán)的協(xié)同過濾算法[J];計算機應(yīng)用;2007年09期
4 曾子明;張李義;;基于多屬性決策和協(xié)同過濾的智能導(dǎo)購系統(tǒng)[J];武漢大學學報(工學版);2008年02期
5 張富國;;用戶多興趣下基于信任的協(xié)同過濾算法研究[J];小型微型計算機系統(tǒng);2008年08期
6 侯翠琴;焦李成;張文革;;一種壓縮稀疏用戶評分矩陣的協(xié)同過濾算法[J];西安電子科技大學學報;2009年04期
7 廖新考;;基于用戶特征和項目屬性的混合協(xié)同過濾推薦[J];福建電腦;2010年07期
8 沈磊;周一民;李舟軍;;基于心理學模型的協(xié)同過濾推薦方法[J];計算機工程;2010年20期
9 徐紅;彭黎;郭艾寅;徐云劍;;基于用戶多興趣的協(xié)同過濾策略改進研究[J];計算機技術(shù)與發(fā)展;2011年04期
10 焦晨斌;王世卿;;基于模型填充的混合協(xié)同過濾算法[J];微計算機信息;2011年11期
相關(guān)會議論文 前10條
1 沈杰峰;杜亞軍;唐俊;;一種基于項目分類的協(xié)同過濾算法[A];第二十二屆中國數(shù)據(jù)庫學術(shù)會議論文集(技術(shù)報告篇)[C];2005年
2 周軍鋒;湯顯;郭景峰;;一種優(yōu)化的協(xié)同過濾推薦算法[A];第二十一屆中國數(shù)據(jù)庫學術(shù)會議論文集(研究報告篇)[C];2004年
3 董全德;;基于雙信息源的協(xié)同過濾算法研究[A];全國第20屆計算機技術(shù)與應(yīng)用學術(shù)會議(CACIS·2009)暨全國第1屆安全關(guān)鍵技術(shù)與應(yīng)用學術(shù)會議論文集(上冊)[C];2009年
4 張光衛(wèi);康建初;李鶴松;劉常昱;李德毅;;面向場景的協(xié)同過濾推薦算法[A];中國系統(tǒng)仿真學會第五次全國會員代表大會暨2006年全國學術(shù)年會論文集[C];2006年
5 李建國;姚良超;湯庸;郭歡;;基于認知度的協(xié)同過濾推薦算法[A];第26屆中國數(shù)據(jù)庫學術(shù)會議論文集(B輯)[C];2009年
6 王明文;陶紅亮;熊小勇;;雙向聚類迭代的協(xié)同過濾推薦算法[A];第三屆全國信息檢索與內(nèi)容安全學術(shù)會議論文集[C];2007年
7 胡必云;李舟軍;王君;;基于心理測量學的協(xié)同過濾相似度方法(英文)[A];NDBC2010第27屆中國數(shù)據(jù)庫學術(shù)會議論文集(B輯)[C];2010年
8 林麗冰;師瑞峰;周一民;李月雷;;基于雙聚類的協(xié)同過濾推薦算法[A];2008'中國信息技術(shù)與應(yīng)用學術(shù)論壇論文集(一)[C];2008年
9 羅喜軍;王韜丞;杜小勇;劉紅巖;何軍;;基于類別的推薦——一種解決協(xié)同推薦中冷啟動問題的方法[A];第二十四屆中國數(shù)據(jù)庫學術(shù)會議論文集(研究報告篇)[C];2007年
10 黃創(chuàng)光;印鑒;汪靜;劉玉葆;王甲海;;不確定近鄰的協(xié)同過濾推薦算法[A];NDBC2010第27屆中國數(shù)據(jù)庫學術(shù)會議論文集A輯一[C];2010年
相關(guān)博士學位論文 前10條
1 紀科;融合上下文信息的混合協(xié)同過濾推薦算法研究[D];北京交通大學;2016年
2 程殿虎;基于協(xié)同過濾的社會網(wǎng)絡(luò)推薦系統(tǒng)關(guān)鍵技術(shù)研究[D];中國海洋大學;2015年
3 于程遠;基于QoS的Web服務(wù)推薦技術(shù)研究[D];上海交通大學;2015年
4 李聰;電子商務(wù)推薦系統(tǒng)中協(xié)同過濾瓶頸問題研究[D];合肥工業(yè)大學;2009年
5 郭艷紅;推薦系統(tǒng)的協(xié)同過濾算法與應(yīng)用研究[D];大連理工大學;2008年
6 羅恒;基于協(xié)同過濾視角的受限玻爾茲曼機研究[D];上海交通大學;2011年
7 薛福亮;電子商務(wù)協(xié)同過濾推薦質(zhì)量影響因素及其改進機制研究[D];天津大學;2012年
8 高e,
本文編號:2212181
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2212181.html