基于網(wǎng)絡(luò)演化的推薦算法分析與網(wǎng)絡(luò)壓縮重建算法設(shè)計
[Abstract]:With the rapid development of Internet technology and the expansion of e-commerce, personalized recommendation technology has brought great convenience to people's life. However most of the traditional recommendation algorithms are limited to static data and single recommendation scenarios ignoring the evolution characteristics of recommendation scenarios over time and the validity of recommendation algorithms. Combined with the basic theory of network science, the bipartite network is used to describe the recommendation problem, and the dynamic evolution of recommendation scene is combined to establish the online selection model of users. The effectiveness of online recommendation algorithm and the co-evolution of online system are studied. A new method for large-scale network compression is proposed. The main content is: 1. The long-term evolution characteristics of the performance of the recommendation algorithm in the system are studied. In this paper, we design a user selection model to simulate the collaborative evolution of online systems and recommendation algorithms, and systematically detect the long-term variation of the recommendation performance of several classical recommendation algorithms under the evolution of online systems. It is found that the single-step recommendation performance of the recommendation algorithm will deteriorate gradually when the system evolution is completely dependent on the recommendation algorithm. Interestingly, the study also found that random selection of users improves the long-term performance of recommendation algorithms. When the hybrid recommendation algorithm is used in the system, it is found that the optimal parameter value of the algorithm moves towards the direction of the improvement of the recommendation diversity, which indicates that the improvement of the recommendation diversity is very important to maintain the accuracy of the long-term recommendation. Finally, the results of the model are verified in the empirical analysis. This study provides theoretical support for the design of long-term effective recommendation algorithm. 2. A hierarchical dynamic network compression algorithm is proposed. In this paper, a new hierarchical dynamic network compression algorithm, HDSLN (Hierarchical Dynamic Summarization of Large Networks), is proposed to solve the problems of large scale network compression algorithm, which is based on network segmentation, edge reconnection and iterative compression. A large scale network is hierarchically compressed into a small scale network while preserving the original network structure as much as possible. In addition, a new network reconstruction algorithm based on Super-Net is proposed, which enables us to restore the original network as similar as possible according to Super-Net. At the same time, in order to verify the performance of the algorithm, we use artificial and real data sets to test and analyze the HDSLN algorithm.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進(jìn)[J];計算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評價估計的混合推薦算法研究[J];微計算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(自然科學(xué)版);2011年03期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機(jī)應(yīng)用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2183034
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2183034.html