天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于網(wǎng)絡(luò)演化的推薦算法分析與網(wǎng)絡(luò)壓縮重建算法設(shè)計(jì)

發(fā)布時(shí)間:2018-08-14 13:40
【摘要】:隨著互聯(lián)網(wǎng)技術(shù)的蓬勃發(fā)展和電子商務(wù)的規(guī)模不斷擴(kuò)大,個(gè)性化推薦技術(shù)給人們的生活帶來(lái)了巨大便利。然而,傳統(tǒng)的推薦算法大多局限于靜態(tài)數(shù)據(jù)和單次推薦場(chǎng)景,忽略了推薦應(yīng)用場(chǎng)景隨時(shí)間演化特征和推薦算法有效性的伴隨變化。本文結(jié)合網(wǎng)絡(luò)科學(xué)基本理論,采用二分網(wǎng)絡(luò)刻畫(huà)推薦問(wèn)題,結(jié)合推薦場(chǎng)景動(dòng)態(tài)演化的特征,建立用戶在線選擇模型,研究在線推薦算法的有效性和在線系統(tǒng)的協(xié)同演化問(wèn)題,并針對(duì)大規(guī)模網(wǎng)絡(luò)壓縮提出了新的辦法。主要內(nèi)容有:1.研究了推薦算法的性能在系統(tǒng)中的長(zhǎng)期演化特征。本文設(shè)計(jì)了一種用戶選擇模型模擬在線系統(tǒng)與推薦算法協(xié)同演化的過(guò)程,系統(tǒng)地檢測(cè)了幾種經(jīng)典推薦算法的推薦性能處于在線系統(tǒng)演化下的長(zhǎng)期變化情況。研究發(fā)現(xiàn),在系統(tǒng)演化完全依賴(lài)推薦算法的情況下,推薦算法的單步推薦性能會(huì)逐漸變差。有趣的是,研究還發(fā)現(xiàn)了用戶的隨機(jī)選擇會(huì)改善推薦算法的長(zhǎng)期性能。當(dāng)系統(tǒng)采用混合推薦算法時(shí),研究發(fā)現(xiàn)算法的最優(yōu)參數(shù)值向著是推薦多樣性改善的方向移動(dòng),這表明推薦多樣性的改善對(duì)保持長(zhǎng)期推薦準(zhǔn)確性很重要。最后在實(shí)證中驗(yàn)證了模型的結(jié)果。本研究為設(shè)計(jì)長(zhǎng)期有效的推薦算法提供了理論支撐。2.提出了一種層次化的動(dòng)態(tài)網(wǎng)絡(luò)壓縮算法。本文針對(duì)大規(guī)模網(wǎng)絡(luò)壓縮算法存在的問(wèn)題,提出了一種新的層次化動(dòng)態(tài)網(wǎng)絡(luò)壓縮算法-HDSLN(Hierarchical Dynamic Summarization of Large Networks),通過(guò)網(wǎng)絡(luò)分割,邊的重連和迭代壓縮的方法,將一個(gè)大規(guī)模網(wǎng)絡(luò)層次化地壓縮成小規(guī)模網(wǎng)絡(luò),同時(shí)盡可能地保留網(wǎng)絡(luò)的原有結(jié)構(gòu)。此外,本文還提出了一種新的基于Super-Net的網(wǎng)絡(luò)重建算法,使得我們可以根據(jù)Super-Net盡可能相似地還原出原網(wǎng)絡(luò)。同時(shí),為了驗(yàn)證算法的性能,我們采用人工和真實(shí)數(shù)據(jù)集對(duì)HDSLN算法進(jìn)行了實(shí)驗(yàn)和分析。
[Abstract]:With the rapid development of Internet technology and the expansion of e-commerce, personalized recommendation technology has brought great convenience to people's life. However most of the traditional recommendation algorithms are limited to static data and single recommendation scenarios ignoring the evolution characteristics of recommendation scenarios over time and the validity of recommendation algorithms. Combined with the basic theory of network science, the bipartite network is used to describe the recommendation problem, and the dynamic evolution of recommendation scene is combined to establish the online selection model of users. The effectiveness of online recommendation algorithm and the co-evolution of online system are studied. A new method for large-scale network compression is proposed. The main content is: 1. The long-term evolution characteristics of the performance of the recommendation algorithm in the system are studied. In this paper, we design a user selection model to simulate the collaborative evolution of online systems and recommendation algorithms, and systematically detect the long-term variation of the recommendation performance of several classical recommendation algorithms under the evolution of online systems. It is found that the single-step recommendation performance of the recommendation algorithm will deteriorate gradually when the system evolution is completely dependent on the recommendation algorithm. Interestingly, the study also found that random selection of users improves the long-term performance of recommendation algorithms. When the hybrid recommendation algorithm is used in the system, it is found that the optimal parameter value of the algorithm moves towards the direction of the improvement of the recommendation diversity, which indicates that the improvement of the recommendation diversity is very important to maintain the accuracy of the long-term recommendation. Finally, the results of the model are verified in the empirical analysis. This study provides theoretical support for the design of long-term effective recommendation algorithm. 2. A hierarchical dynamic network compression algorithm is proposed. In this paper, a new hierarchical dynamic network compression algorithm, HDSLN (Hierarchical Dynamic Summarization of Large Networks), is proposed to solve the problems of large scale network compression algorithm, which is based on network segmentation, edge reconnection and iterative compression. A large scale network is hierarchically compressed into a small scale network while preserving the original network structure as much as possible. In addition, a new network reconstruction algorithm based on Super-Net is proposed, which enables us to restore the original network as similar as possible according to Super-Net. At the same time, in order to verify the performance of the algorithm, we use artificial and real data sets to test and analyze the HDSLN algorithm.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP391.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期

2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期

3 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類(lèi)的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期

4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期

5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期

6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期

7 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期

8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期

9 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期

10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期

相關(guān)會(huì)議論文 前10條

1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年

2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年

3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年

4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年

5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年

6 梁莘q,

本文編號(hào):2183034


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2183034.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1ba71***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com