異構(gòu)語(yǔ)義日志知識(shí)庫(kù)上頻繁訪問模式發(fā)現(xiàn)的研究
[Abstract]:The semantic Web gives the content on the Web semantics that the computer can understand and interpret, and it can effectively improve the efficiency of Web usage mining. It has become an important research direction in the field of artificial intelligence. Frequent access pattern discovery, as an important part of user usage mining on the Web, can mine the frequent access behavior of users in different situations from the mass of Web usage data, and the mining results are useful for the development of electronic commerce. It is of great significance to improve website management and enhance personalized services. Based on the ontology and rules of semantic Web, this paper focuses on the combination of them and the discovery of frequent Web access patterns in this heterogeneous semantic log knowledge base. The main work includes: 1. The formal description of the improved log ontology takes the event as the core and the hierarchical formal description of the log ontology is improved. The ontology is defined as a six-tuple and its domain relations are represented by application rules. Because the domain relationship in log ontology is mainly defined by domain experts, it can neither guarantee the comprehensiveness of the content nor satisfy the dynamic nature of the application scenario. This improvement not only simplifies the content of the log ontology, Also more in line with the actual needs. Secondly, the semantic log knowledge base is constructed based on heterogeneous method combined with log ontology and rules. Datalog heterogeneous rules are used to represent domain relationship and user access behavior. Under the constraint of Datalog security, heterogeneous semantic log knowledge base is constructed with log ontology. This method overcomes the weakness of ontology reasoning ability and dynamic semantic expression ability, realizes their complementary advantages, and effectively improves the expression and reasoning ability of knowledge base. Thirdly, a method of mining frequent Web access patterns on Datalog heterogeneous semantic log knowledge base is proposed. Based on ILP theory, a method of mining frequent Web access patterns is proposed. By inputting core event refE, expanding the pattern space of Web access, constructing candidate access pattern set and verifying the validity and computing support of the schema, the frequent user access patterns on the Web are discovered. Fourthly, the system design and implementation of Web frequent access pattern mining based on heterogeneous semantic log knowledge base is designed and implemented, and a frequent Web access pattern discovery system based on Java programming language is designed and implemented. The system includes two parts: heterogeneous semantic log knowledge base construction and frequent access pattern mining. Log ontology is generated by ontology parser, application rules are generated by rule parser and security check of heterogeneous rules, and heterogeneous semantic log knowledge base is constructed by combining them. The frequent access patterns of users are found from the knowledge base by mining frequent Web access patterns. The feasibility of theoretical research is verified by experiments.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任廣偉;;一種適用于挖掘游戲訪問模式的Apriori_Trie_GAPM算法[J];電大理工;2007年01期
2 陳敏;苗奪謙;;一種基于Close模式發(fā)現(xiàn)用戶頻繁訪問路徑的方法[J];計(jì)算機(jī)工程;2007年08期
3 王偉能;倪凱;馬建設(shè);王宗超;趙詣;潘龍法;;多通道并行訪問模式下的閃存靜態(tài)損耗均衡設(shè)計(jì)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年11期
4 柴巧葉;;基于關(guān)聯(lián)規(guī)則的用戶頻繁訪問模式研究[J];太原師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年02期
5 李紅衛(wèi);古春生;白鳳娥;;安全訪問外包數(shù)據(jù)的研究[J];電子技術(shù)應(yīng)用;2013年07期
6 李紅衛(wèi);黃卓恒;李翠萍;;云存儲(chǔ)中數(shù)據(jù)安全訪問的研究[J];江蘇技術(shù)師范學(xué)院學(xué)報(bào);2013年04期
7 許曉東;李柯;朱士瑞;;Web使用挖掘中Apriori算法的改進(jìn)研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年03期
8 余勝生,范曄斌,周敬利;新型藍(lán)牙局域網(wǎng)訪問模式[J];計(jì)算機(jī)工程;2002年07期
9 肖國(guó)強(qiáng),肖軼;一種從Web日志中挖掘訪問模式的新算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
10 郭維;歐陽(yáng)一鳴;郭駿;;Web挖掘中基于交集算法發(fā)現(xiàn)用戶頻繁訪問模式[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年12期
相關(guān)會(huì)議論文 前3條
1 謝彥麒;謝麗聰;白清源;謝伙生;張瑩;;挖掘Web訪問模式的一種基于路徑克隆的新算法[A];第二十三屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2006年
2 郭建奎;朱揚(yáng)勇;;一個(gè)基于WAP樹結(jié)構(gòu)的自頂向下挖掘Web訪問模式算法[A];第二十二屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2005年
3 李宇騫;袁欣顥;王磊;劉超;劉洋;顧榮輝;王乃錚;陳渝;;分布式共享設(shè)備的等時(shí)傳輸優(yōu)化[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2010)、第19屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2010)、第6屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2010)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2010)論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 孫明;語(yǔ)義Web使用挖掘若干關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 李樹鳳;抗訪問模式泄露的ORAM技術(shù)研究[D];山東大學(xué);2016年
2 汪蘭淳;同構(gòu)語(yǔ)義日志知識(shí)庫(kù)上頻繁Web訪問模式發(fā)現(xiàn)的研究[D];電子科技大學(xué);2016年
3 康文杰;異構(gòu)語(yǔ)義日志知識(shí)庫(kù)上頻繁訪問模式發(fā)現(xiàn)的研究[D];電子科技大學(xué);2016年
4 譚波;對(duì)瘦客戶數(shù)據(jù)訪問模式的研究[D];四川大學(xué);2004年
5 陳君彥;基于粒子群的聚類算法改進(jìn)及其在訪問模式中的應(yīng)用研究[D];天津大學(xué);2007年
6 余夢(mèng)珂;云計(jì)算中隱藏訪問模式的關(guān)鍵詞檢索方案研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
7 何軍;MPI-IO中基于模式感知的數(shù)據(jù)重組織[D];湖南大學(xué);2012年
8 陳敏;基于Web使用挖掘的知識(shí)發(fā)現(xiàn)研究[D];合肥工業(yè)大學(xué);2005年
,本文編號(hào):2138212
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2138212.html