非齊次馬氏鏈廣義熵遍歷定理的推廣
[Abstract]:Markov chain is an important stochastic process in the study of probability theory. It has been widely used in computational science, random fractal, economics, medicine, industry and other social sciences. In recent years, after giving the generalized entropy density of nonhomogeneous Markov chains, Wang Zhongzhi and Yang Weiguo have obtained a class of limit theorems about nonhomogeneous Markov chains, that is, generalized entropy ergodic theorems. In this paper, the generalized entropy ergodic theorem is extended to a class of binary functions of first order nonhomogeneous Markov chains and second-order nonhomogeneous Markov information sources by means of martingale method. First of all, this paper briefly introduces the background of Markov process, the main research achievements at home and abroad, and the structure of this paper. Then, some basic knowledge of Markov chain and martingale theory and some important Lemma in the study of Markov chain are given. Then, the definition of generalized entropy density of nonhomogeneous Markov chains and the generalized entropy ergodic theorem of nonhomogeneous Markov chains obtained by Yang Weiguo are introduced. Then we generalize the limit theorem of first order nonhomogeneous Markov chain to a class of functions by using martingale method. In addition, in life, we often use a second-order Markov source to describe practical problems. Yang Weiguo and Liu Wen have obtained the classical entropy ergodic theorem on the second order nonhomogeneous Markov sources. In this paper, we generalize the generalized entropy ergodic theorem to the second order inhomogeneous Markov information source on the premise of giving the generalized entropy density of the second order nonhomogeneous Markov information source. The generalized entropy ergodic theorem of second-order nonhomogeneous Markov sources is obtained. Finally, the paper summarizes the full text, expounds some shortcomings in this paper, and points out the research content and exploration direction in the future.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭昊坤;吳軍基;應(yīng)展烽;孟紹良;;一種改進(jìn)的馬爾科夫鏈及其在電力線通信信道脈沖噪聲建模中的應(yīng)用[J];電力系統(tǒng)保護(hù)與控制;2012年05期
2 吳小太;楊衛(wèi)國(guó);;隱非齊次馬爾可夫模型的強(qiáng)大數(shù)定律[J];數(shù)學(xué)雜志;2011年02期
3 羅澤舉;李艷會(huì);宋麗紅;朱思銘;;基于隱馬爾可夫模型的DNA序列識(shí)別[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年08期
4 楊衛(wèi)國(guó);葉中行;;Cayley樹圖上奇偶馬氏鏈場(chǎng)的漸近均分割性[J];應(yīng)用概率統(tǒng)計(jì);2006年01期
5 楊衛(wèi)國(guó),李芳,王小勝;一類非齊次馬氏鏈的收斂速度[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期
6 楊衛(wèi)國(guó),劉文;關(guān)于非齊次二重馬氏信源的若干極限定理[J];應(yīng)用概率統(tǒng)計(jì);1999年02期
7 劉文,楊衛(wèi)國(guó);關(guān)于非齊次馬氏信源的漸進(jìn)均勻分割性[J];應(yīng)用概率統(tǒng)計(jì);1997年04期
8 劉文,楊衛(wèi)國(guó),張麗娜;關(guān)于任意隨機(jī)變量序列的一類強(qiáng)極限定理[J];數(shù)學(xué)學(xué)報(bào);1997年04期
9 劉文,楊衛(wèi)國(guó);相對(duì)熵密度與任意二進(jìn)信源的若干極限性質(zhì)[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);1994年01期
10 楊衛(wèi)國(guó);非齊馬氏鏈熵率存在定理[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);1993年02期
,本文編號(hào):2252869
本文鏈接:http://sikaile.net/jingjifazhanlunwen/2252869.html