基于改進KNN算法的二手房評估
[Abstract]:Traditional methods of house evaluation, such as income method, cost method and market comparison method, have many problems, such as high cost, low efficiency, poor precision and so on. Based on the research of KNN algorithm and second-hand house evaluation, this paper analyzes the characteristics of KNN algorithm and the feasibility of applying the algorithm to second-hand housing evaluation. The key data in second-hand housing information is easy to be numerical and standardized, and the KNN algorithm is feasible in the model, and the filtered sample set size controllable KNN algorithm also has a large space in time complexity optimization, and is feasible in computing efficiency. The KNN algorithm is easy to realize for the second-hand housing information, which has a clear structure, and the cost is lower, so it is economically feasible. This paper analyzes the classification technology and regression technology in data mining, then selects KNN algorithm as the core technology to evaluate second-hand housing, and realizes a B / S (browser / Server mode) evaluation application. Give target users with second-hand housing assessment needs a quick way to get results. Through research and analysis, it is found that the classical KNN algorithm has the advantages of high precision, insensitivity to the noise in the sample set, and the disadvantages of hard to select k value, high time complexity and large influence of sample balance. For the advantages of the algorithm, the method of weighted result set is used to further improve the accuracy of the algorithm, and the method of de-duplication and standardization is used to reduce the noise, and for the shortcomings of the algorithm, the value of k is selected by the method of multiple tests. The time complexity is reduced by using TopK algorithm and multi-thread concurrency, and the sample balance is stabilized by classifying the data in the data acquisition stage. In order to verify the practicability of the improved KNN algorithm, this algorithm is used to analyze some second-hand housing data in Harbin. Through the preprocessing of the data and the realization of the improved KNN algorithm, the evaluation results of the second-hand house are given. For the target users such as second-hand house owners and intermediaries, the B / S application of the improved KNN algorithm for second-hand housing evaluation has the advantages of faster calculation speed and friendly interface than the traditional second-hand housing evaluation method. Meet the needs of the target users well.
【學位授予單位】:哈爾濱商業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F299.23;TP311.13
【參考文獻】
相關期刊論文 前10條
1 曲衛(wèi)東;於洋;;基于蒙特卡洛模擬假設開發(fā)法對土地出讓底價評估的改進[J];中國土地科學;2014年11期
2 王麗英;;房地產(chǎn)估價主觀風險分析[J];中國集體經(jīng)濟;2012年13期
3 張楠;苗奪謙;岳曉冬;;區(qū)間值信息系統(tǒng)的知識約簡[J];計算機研究與發(fā)展;2010年08期
4 張孝飛;黃河燕;;一種采用聚類技術改進的KNN文本分類方法[J];模式識別與人工智能;2009年06期
5 項勇;楊玉靜;舒小蘭;;基于特征價格的城市交通對房價影響分析[J];技術經(jīng)濟與管理研究;2009年06期
6 朱明旱;羅大庸;易勵群;;一種序列的加權kNN分類方法[J];電子學報;2009年11期
7 蘇映雪;付耀文;;基于KNN算法的組合式非搜索特征選擇算法[J];計算機工程;2007年18期
8 王曉曄,王正歐;K-最近鄰分類技術的改進算法[J];電子與信息學報;2005年03期
9 陳莉,焦李成;Internet/Web數(shù)據(jù)挖掘研究現(xiàn)狀及最新進展[J];西安電子科技大學學報;2001年01期
10 陳莉;數(shù)據(jù)庫中的知識發(fā)現(xiàn)[J];西北大學學報(自然科學版);1999年01期
相關會議論文 前1條
1 鄭思齊;劉洪玉;;市場比較法中因素調(diào)整過程的改進——歸一法與Hedonic模型法[A];2003中國房地產(chǎn)估價學術研討會論文集[C];2003年
相關碩士學位論文 前3條
1 張靜;基于主成分分析的房地產(chǎn)估價方法研究[D];河北工業(yè)大學;2007年
2 張威;灰色理論和模糊集在房地產(chǎn)估價中的綜合應用研究[D];合肥工業(yè)大學;2006年
3 沈良峰;房地產(chǎn)估價基本方法參數(shù)的改進研究[D];中南大學;2003年
,本文編號:2131706
本文鏈接:http://sikaile.net/jingjifazhanlunwen/2131706.html