基于擁堵概率的北京市配送路徑選擇研究
本文選題:擁堵概率 切入點(diǎn):城市配送 出處:《北京交通大學(xué)》2017年碩士論文
【摘要】:城市嚴(yán)重的交通擁堵問題,使配送效率大大降低,而配送企業(yè)為提高配送服務(wù)質(zhì)量,滿足配送要求,又需要投入配送車輛,配送車輛的投入又加劇了交通擁擠,因此城市配送面臨著更加巨大的挑戰(zhàn),如何避免道路的擁堵或者在道路擁堵狀況不確定的情況下選擇恰當(dāng)?shù)呐渌吐窂?準(zhǔn)時(shí)完成配送成了各個(gè)配送行業(yè)追逐的目標(biāo)。在此背景下,本文進(jìn)行如下仿真研究。本文將北京市作為研究對象,首先對北京市路網(wǎng)和北京市物流中心布局進(jìn)行分析,通過長期觀測北京市路網(wǎng)的交通狀況,統(tǒng)計(jì)出高峰時(shí)段和非高峰時(shí)段下北京市各路段的擁堵概率,并根據(jù)“十二五”規(guī)劃設(shè)定北京市物流中心。隨后分析北京市的配送需求,結(jié)合配送需求設(shè)定基于擁堵概率的北京城市配送模型的運(yùn)行流程,在此基礎(chǔ)上在Anylogic仿真平臺上建立Agent(MainAgent、客戶需求Agent、車輛運(yùn)輸Agent)仿真模型。接下來通過定量與定性相結(jié)合的辦法驗(yàn)證了本文模型的合理性。然后結(jié)合實(shí)際的交通狀況對北京市的配送情況進(jìn)行仿真。最后對仿真結(jié)果主要進(jìn)行配送路徑、配送距離和配送時(shí)間三方面的分析,并根據(jù)分析結(jié)果得出北京城市配送中的關(guān)鍵路段,以為配送路徑的選擇提供合理性建議。本文得出的結(jié)論主要有以下兩方面內(nèi)容:一方面,考慮擁堵概率后,配送活動對北京市的道路交通狀況產(chǎn)生了影響,高峰時(shí)段下,二環(huán)、三環(huán)的交通負(fù)荷較低,而四環(huán)、五環(huán)、六環(huán)的交通負(fù)荷變大,非高峰時(shí)段下,東五環(huán)、南三環(huán)、東三環(huán)、西三環(huán)的交通負(fù)荷明顯變高。另一方面,不同時(shí)段下,配送車輛選擇配送路徑受到擁堵概率的影響不同,高峰時(shí)段下,配送車輛選擇配送路徑時(shí)受到路段擁堵概率的影響較明顯,配送車輛會避開擁堵概率較高的路徑,選擇繞行擁堵概率較低的環(huán)線進(jìn)行配送,而非高峰時(shí)段配送車輛選擇配送路徑時(shí)受到路段擁堵概率的影響較小。
[Abstract]:In order to improve the service quality and meet the requirements of distribution, the distribution enterprises need to invest in the distribution vehicles, and the investment of the distribution vehicles has aggravated the traffic congestion. Therefore, urban distribution is faced with a greater challenge, how to avoid road congestion or in the case of uncertain road congestion conditions to choose the appropriate distribution path, Completion of distribution on time has become the goal pursued by all distribution industries. In this context, the following simulation studies are carried out in this paper. In this paper, Beijing is taken as the research object, and the distribution of Beijing network and logistics center is analyzed first. Through long-term observation of the traffic situation of Beijing's road network, the congestion probability of each section of Beijing during peak and off-peak periods is calculated, and the Beijing logistics center is set up according to the 12th Five-Year Plan. The distribution demand of Beijing is then analyzed. According to the distribution demand, the operation process of Beijing urban distribution model based on congestion probability is set up. On this basis, the simulation model of Agent main Agent, customer demand Agent and vehicle Transportation Agent is established on the Anylogic simulation platform. Then the rationality of this model is verified by the combination of quantitative and qualitative methods. The distribution situation in Beijing is simulated. Finally, the distribution path is mainly carried out on the simulation results. The analysis of distribution distance and distribution time, and according to the results of the analysis of the key sections of urban distribution in Beijing to provide reasonable advice for the choice of distribution routes. The conclusions of this paper have the following two main contents: on the one hand, After considering the congestion probability, distribution activities have an impact on the road traffic situation in Beijing. During the peak hours, the traffic loads of the second and third rings are relatively low, while the traffic loads of the fourth, fifth, and sixth rings become larger, and during the off-peak hours, the East Fifth Ring, On the other hand, at different times, the choice of distribution routes of distribution vehicles is affected by the congestion probability, and during the peak period, the traffic load of the third Ring Road, the East third Ring Ring, and the West third Ring Ring has become significantly higher. When the distribution vehicle chooses the distribution path, it is obviously affected by the congestion probability of the section. The distribution vehicle will avoid the path with the higher congestion probability and choose the loop with low congestion probability to distribute. However, the non-peak distribution vehicles are less affected by the congestion probability when they choose the distribution path.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F259.27;U492.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍科軍;韓子雯;羅小東;毛學(xué)軍;曾明輝;;霧天環(huán)境下高速公路路徑誘導(dǎo)方案[J];徐州工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2016年03期
2 謝晨;梁承姬;徐德洪;;基于HFSS的集裝箱碼頭集成調(diào)度模型的建立與求解[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年03期
3 謝潛;武鵬;周江昕;余浩斌;程浩忠;梅紅興;邢海軍;;基于Floyd-warshall算法的分布式電源孤島劃分[J];水電能源科學(xué);2015年10期
4 顧青;豆風(fēng)鉛;馬飛;;基于改進(jìn)A*算法的電動車能耗最優(yōu)路徑規(guī)劃[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年12期
5 楊揚(yáng);姚恩建;潘龍;趙楠;;基于GPS數(shù)據(jù)的出租車路徑選擇行為研究[J];交通運(yùn)輸系統(tǒng)工程與信息;2015年01期
6 韓富狀;陳穎彪;千慶蘭;謝錦鵬;;基于GIS技術(shù)的物流配送線路優(yōu)化與仿真模擬[J];熱帶地理;2014年06期
7 孔曉冉;張玉春;;基于系統(tǒng)動力學(xué)的城市物流與經(jīng)濟(jì)協(xié)調(diào)發(fā)展的仿真研究——以蘭州市為例[J];物流工程與管理;2014年11期
8 汪欣;范精明;楊青樂;李文祿;張榮彬;;基于風(fēng)險(xiǎn)分析的軍用危險(xiǎn)品道路運(yùn)輸線路優(yōu)化[J];軍事交通學(xué)院學(xué)報(bào);2014年06期
9 安毅生;袁紹欣;趙祥模;岳云;;基于蟻群算法的動態(tài)路徑選擇優(yōu)化方法[J];交通運(yùn)輸系統(tǒng)工程與信息;2014年03期
10 吳小珍;李表奎;董紫嫣;李博星;詹俊;;基于SPFA的整車物流運(yùn)輸線路及運(yùn)輸方式的優(yōu)化及求解[J];物流工程與管理;2014年05期
相關(guān)碩士學(xué)位論文 前1條
1 汪利軍;基于改進(jìn)遺傳算法的城市配送車輛調(diào)度優(yōu)化研究[D];長沙理工大學(xué);2007年
,本文編號:1699525
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1699525.html