零膨脹模型及檢驗(yàn)方法的比較研究
發(fā)布時(shí)間:2018-04-01 01:37
本文選題:計(jì)數(shù)數(shù)據(jù) 切入點(diǎn):零膨脹 出處:《貴州民族大學(xué)》2017年碩士論文
【摘要】:計(jì)數(shù)數(shù)據(jù)是一類重要的數(shù)據(jù)類型,廣泛存在于醫(yī)學(xué)、生物和農(nóng)業(yè)等領(lǐng)域中。當(dāng)計(jì)數(shù)數(shù)據(jù)中出現(xiàn)零的比例超出泊松回歸模型或負(fù)二項(xiàng)回歸模型等常用計(jì)數(shù)模型的預(yù)測(cè)能力,即數(shù)據(jù)存在零膨脹現(xiàn)象時(shí),若再用經(jīng)典的計(jì)數(shù)模型如泊松回歸模型對(duì)數(shù)據(jù)進(jìn)行擬合分析就可能得到錯(cuò)誤的統(tǒng)計(jì)推斷結(jié)論。因此,對(duì)計(jì)數(shù)數(shù)據(jù)是否存在零膨脹現(xiàn)象的檢驗(yàn)問(wèn)題以及對(duì)存在零膨脹現(xiàn)象數(shù)據(jù)的模型選擇問(wèn)題研究具有重要的意義。本文基于Monte Carlo模擬方法就這兩個(gè)問(wèn)題進(jìn)行了探討分析,具體內(nèi)容如下。第一章,就問(wèn)題的研究背景、國(guó)內(nèi)外研究現(xiàn)狀以及本文的研究思路與研究?jī)?nèi)容安排做了簡(jiǎn)單的介紹。第二章,就本文研究所涉及的泊松回歸模型、負(fù)二項(xiàng)回歸模型、零膨脹泊松回歸模型和零膨脹負(fù)二項(xiàng)回歸模型及相關(guān)知識(shí)做了簡(jiǎn)單的介紹。第三章,針對(duì)計(jì)數(shù)數(shù)據(jù)是否存在零膨脹現(xiàn)象的檢驗(yàn)問(wèn)題,通過(guò)Monte Carlo模擬分析方法,探討了不同零膨脹程度、不同均值和不同樣本量條件下,零膨脹泊松回歸模型中七種檢驗(yàn)方法在檢驗(yàn)功效和犯第一類錯(cuò)誤的概率意義下的優(yōu)良性,并結(jié)合實(shí)例就七種檢驗(yàn)方法進(jìn)行了簡(jiǎn)單的說(shuō)明。第四章,通過(guò)Monte Carlo模擬,產(chǎn)生來(lái)自零膨脹泊松分布和零膨脹負(fù)二項(xiàng)分布的隨機(jī)數(shù),并用泊松回歸模型、負(fù)二項(xiàng)回歸模型、零膨脹泊松回歸模型和零膨脹負(fù)二項(xiàng)回歸模型對(duì)產(chǎn)生的隨機(jī)數(shù)進(jìn)行擬合分析,在不同準(zhǔn)則下,對(duì)模型的優(yōu)良性進(jìn)行研究。第五章,對(duì)本文的研究結(jié)果進(jìn)行了總結(jié),并結(jié)合本文研究存在的不足,給出了后續(xù)研究的一點(diǎn)思考。
[Abstract]:Counting data is a kind of important data type, which widely exists in the fields of medicine, biology and agriculture. When the proportion of zero in counting data exceeds the prediction ability of common counting models such as Poisson regression model or negative binomial regression model, That is, if the classical counting model such as Poisson regression model is used to fit and analyze the data when there is zero expansion, the wrong statistical inference can be obtained. It is of great significance to examine whether there is zero expansion in the counting data and to study the model selection of the zero expansion data. This paper discusses and analyzes these two problems based on the Monte Carlo simulation method. The main contents are as follows. The first chapter introduces the background of the research, the current situation of the research at home and abroad, the research ideas and the research contents. Chapter two, the Poisson regression model, which is involved in this paper, is introduced. The negative binomial regression model, zero expansion Poisson regression model, zero expansion negative binomial regression model and related knowledge are briefly introduced. In chapter 3, the Monte Carlo simulation analysis method is used to test the existence of zero expansion phenomenon in counting data. Under the conditions of different zero expansion degree, different mean value and different sample size, seven test methods in the zero expansion Poisson regression model are discussed in the sense of test efficacy and probability of making the first kind of error. In chapter 4, through Monte Carlo simulation, random numbers from zero expansion Poisson distribution and zero expansion negative binomial distribution are generated, and Poisson regression model and negative binomial regression model are used. The zero expansion Poisson regression model and the zero expansion negative binomial regression model are used to fit and analyze the generated random numbers. Combined with the shortcomings of this study, this paper gives some thoughts on the follow-up research.
【學(xué)位授予單位】:貴州民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 李政宵;孟生旺;;考慮空間效應(yīng)的貝葉斯分層模型與索賠頻率預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年10期
2 田嬌妮;劉桂芬;張軍鋒;羅天娥;;多水平零膨脹計(jì)數(shù)模型在骨關(guān)節(jié)疼痛影響因素中的應(yīng)用研究[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2012年01期
3 孟生旺;王維;;零膨脹損失次數(shù)回歸模型及其應(yīng)用[J];蘭州商學(xué)院學(xué)報(bào);2011年01期
4 王存同;;零膨脹模型在社會(huì)科學(xué)實(shí)證研究中的應(yīng)用——以中國(guó)人工流產(chǎn)影響因素的分析為例[J];社會(huì)學(xué)研究;2010年05期
5 張華君;閔捷;王蓓;胡曉江;;零過(guò)多資料的統(tǒng)計(jì)方法在上呼吸道感染調(diào)查資料中的應(yīng)用[J];中華流行病學(xué)雜志;2006年08期
相關(guān)碩士學(xué)位論文 前1條
1 張曉琳;基于零膨脹計(jì)數(shù)數(shù)據(jù)回歸模型的貝葉斯分析[D];昆明理工大學(xué);2015年
,本文編號(hào):1693418
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1693418.html
最近更新
教材專著