基于高頻數(shù)據(jù)的金融市場風險傳染和動態(tài)對沖研究
本文選題:高頻數(shù)據(jù) 切入點:BAYES-DCC-GARCH模型 出處:《浙江大學》2017年碩士論文
【摘要】:本文基于科技和經(jīng)濟快速發(fā)展的時代背景下,金融市場的風險傳染效應表現(xiàn)出高速和頻發(fā)等特性,采用能夠反應金融資產(chǎn)收益率序列有偏性、“尖峰厚尾”等特性的BAYES-DCC-GARCH模型,和獲得全局最優(yōu)解的MCMC參數(shù)估計方法,結合滬深300股指期貨、中證500股指期貨、上證50股指期貨和這三個股指期貨對應的股票指數(shù),以及10年國債期貨的1分鐘高頻數(shù)據(jù),研究了這些市場之間的風險傳染效應和明確了這些市場間的動態(tài)條件相關系數(shù)。并且,根據(jù)動態(tài)相關系數(shù)構建風險對沖策略進行實證研究。研究結果顯示,上述七個金融市場收益率序列確實都具有“尖峰厚尾”特征,并且這些金融市場的波動具有集聚性。此外,金融市場上一期的波動越大,波動的衰減速度越慢。其次,在縱向研究模塊,結果顯示在IC、IF、IH這三個股指期貨的波動均為右偏,而三個股票指數(shù)的波動均為左偏。在橫向研究模塊,結果顯示IC股指期貨的波動風險大于IF股指期貨、IH股指期貨的波動風險,而IH股指期貨的波動風險大于IF股指期貨的波動風險。因此,IF股指期貨是三個股指期貨中最為穩(wěn)定的市場。在跨市場研究模塊,結果顯示股指期貨市場的波動程度大于國債期貨的波動程度,而國債期貨的波動風險均大于三個股指期貨的波動風險。最后,股指期貨與對應股票指數(shù)之間,以及三個股指期貨相互之間均具有正向的金融風險傳染效應。并且,股指期貨市場相互之間的金融風險傳染效應大于股指期貨與對應股指的金融風險傳染效應。此外,三個股指期貨與國債期貨之間的金融風險傳染效應具有較小的負向傳染關系。以及,在三個股指中,根據(jù)動態(tài)相關系數(shù)構建的對沖策略均能比靜態(tài)的對沖策略具有更好的對沖效果。
[Abstract]:Based on the rapid development of science and technology and economic background, the risk contagion effect of financial market shows high speed and frequent characteristics, which can response the financial assets yield sequence bias, "BAYES-DCC-GARCH model leptokurtic" features, and obtain the global optimal solution of the MCMC parameter estimation method, combined with the Shanghai and Shenzhen 300 stock index the CSI 500 stock index futures, futures, Shanghai 50 stock index futures and the three corresponding stock index futures stock index, and the 10 year treasury bond futures in the 1 minute high-frequency data, study the risk contagion effect between these markets and the dynamic conditions of these markets. The correlation coefficient and correlation coefficient, according to the dynamic construction of risk hedge strategies for empirical research. The results of the study showed that the seven financial market returns really have "fat tail" feature, and the financial market wave Dynamic clustering. In addition, a period of financial market volatility is larger, fluctuation attenuation slower. Secondly, in the longitudinal study module, the results showed that in IC, IF, IH of the three stock index futures volatility is right, while the three stock index fluctuations are left in. The research results show that the transverse module, the risk of fluctuations in IC stock index futures stock index futures volatility risk is greater than IF, IH stock index futures, volatility risk and volatility of IH stock index futures stock index futures is greater than IF. Therefore, IF stock index futures is a stable market for the three stock index futures. In the cross market research module. The results show the volatility of the volatility of stock index futures market than the Treasury futures, volatility risk and volatility risk of treasury bond futures is greater than three of the stock index futures. Finally, between stock index futures and the corresponding stock index, stock index futures and three between both The financial risk contagion effect positive. And the financial risk contagion effect of financial contagion effect of stock index futures market between stock index futures and stock index is greater than the corresponding. In addition, the financial contagion effect between the three stock index futures and bond futures has a smaller negative contagion relationship. And, in the three stock index, according to the construction the dynamic correlation coefficient of hedge strategy can have better than static hedging strategies to hedge effect.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F224;F724.5;F832.51
【參考文獻】
相關期刊論文 前10條
1 寶音朝古拉;蘇木亞;;股指期貨市場和現(xiàn)貨市場間的協(xié)同波動溢出分析[J];金融理論與實踐;2016年11期
2 石自忠;王明利;胡向東;;我國農(nóng)產(chǎn)品價格與CPI動態(tài)關聯(lián)性分析[J];中國農(nóng)業(yè)大學學報;2016年10期
3 王皓;;基于DCC-GARCH模型對日本股票市場與國際市場波動溢出效應分析[J];現(xiàn)代日本經(jīng)濟;2016年05期
4 柳蘇蕓;韓一軍;包利民;;價格支持政策改革背景下國內(nèi)外大豆市場動態(tài)關聯(lián)分析——基于貝葉斯DCC-GARCH模型[J];農(nóng)業(yè)技術經(jīng)濟;2016年08期
5 劉慧悅;;基于DCC-GARCH模型的新興市場金融傳染效應檢驗[J];統(tǒng)計與決策;2016年12期
6 黃文彬;鄭麗娟;林銀瑞;;套期保值比率模型的比較選擇研究——基于滬深300指數(shù)的分析[J];福州大學學報(哲學社會科學版);2016年03期
7 西村友作;孫便霞;;中國股指現(xiàn)貨和期貨市場的日內(nèi)波動與交易量:基于高頻數(shù)據(jù)的證據(jù)[J];管理工程學報;2016年02期
8 傅強;王宇星;季俊偉;;迷你黃金合約的價格發(fā)現(xiàn)和波動溢出效應研究——基于5分鐘高頻數(shù)據(jù)[J];國際商務(對外經(jīng)濟貿(mào)易大學學報);2016年02期
9 李保林;阿布都瓦力·艾百;;我國股票期現(xiàn)貨市場間的溢出效應研究——基于1分鐘高頻數(shù)據(jù)的實證檢驗[J];金融發(fā)展研究;2015年05期
10 周偉;何建敏;;考慮時變與高頻因素的金融風險傳染效應分析——以SHFE市場金屬期貨為例[J];數(shù)理統(tǒng)計與管理;2015年03期
相關碩士學位論文 前2條
1 趙歡;基于GARCH族模型我國金融期貨市場波動率及相關性研究[D];西南交通大學;2015年
2 孫曉琳;滬深300股指期貨與現(xiàn)貨間波動溢出效應研究[D];山東財經(jīng)大學;2014年
,本文編號:1660992
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1660992.html