基于馬爾科夫機(jī)制轉(zhuǎn)換理論的中國(guó)乘數(shù)——加速數(shù)模型分析
發(fā)布時(shí)間:2018-01-15 15:10
本文關(guān)鍵詞:基于馬爾科夫機(jī)制轉(zhuǎn)換理論的中國(guó)乘數(shù)——加速數(shù)模型分析 出處:《統(tǒng)計(jì)與決策》2017年03期 論文類型:期刊論文
更多相關(guān)文章: 乘數(shù)—加速數(shù)模型 馬爾科夫機(jī)制轉(zhuǎn)換理論 內(nèi)生周期性
【摘要】:文章將馬爾科夫機(jī)制轉(zhuǎn)換模型引入傳統(tǒng)的乘數(shù)—加速數(shù)模型,以解決系數(shù)時(shí)變性問(wèn)題。利用1978年至2014年中國(guó)經(jīng)濟(jì)統(tǒng)計(jì)數(shù)據(jù)進(jìn)行極大似然估計(jì),并且利用Kim的平滑算法對(duì)中國(guó)經(jīng)濟(jì)機(jī)制進(jìn)行了劃分。研究發(fā)現(xiàn),從1980年至2002年,中國(guó)經(jīng)濟(jì)并不存在明顯的內(nèi)生周期性,從2003年至2014年,中國(guó)經(jīng)濟(jì)周期性明顯,周期為10年。
[Abstract]:In this paper, the Markov mechanism transformation model is introduced into the traditional multiplier-accelerator model to solve the time-varying problem of coefficients. The maximum likelihood estimation is carried out by using the Chinese economic statistics from 1978 to 2014. And the Kim smoothing algorithm is used to divide the Chinese economic mechanism. It is found that from 1980 to 2002, there is no obvious endogenous periodicity in the Chinese economy. From 2003 to 2014, China's economic cycle is obvious, the cycle is 10 years.
【作者單位】: 中央財(cái)經(jīng)大學(xué)統(tǒng)計(jì)與數(shù)學(xué)學(xué)院;
【分類號(hào)】:F224;F124
【正文快照】: 0引言經(jīng)濟(jì)波動(dòng)一直是宏觀經(jīng)濟(jì)學(xué)重要的研究課題。我們知道,經(jīng)濟(jì)波動(dòng)分為外生波動(dòng)以及內(nèi)生波動(dòng)。自薩繆爾森(1939)提出兩部門乘數(shù)—加速數(shù)模型以來(lái),因其短小精悍的特點(diǎn)而被學(xué)者們用來(lái)解釋經(jīng)濟(jì)內(nèi)生性波動(dòng)的問(wèn)題。在現(xiàn)實(shí)中,經(jīng)濟(jì)波動(dòng)一方面來(lái)源于乘數(shù)與加速數(shù)的交互作用,另一方面
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張姍姍;;乘數(shù)——加速數(shù)模型的改進(jìn)和穩(wěn)定性分析[J];現(xiàn)代商貿(mào)工業(yè);2007年06期
2 李松齡;經(jīng)濟(jì)波動(dòng)與加速數(shù)、乘數(shù)的組合效應(yīng)[J];系統(tǒng)工程;1989年02期
3 熊焰,趙鐵山,胡軍浩;乘數(shù)-加速數(shù)模型的穩(wěn)定性與宏觀調(diào)控政策[J];系統(tǒng)工程學(xué)報(bào);2005年03期
4 李星偉;;從乘數(shù)——加速數(shù)模型角度看當(dāng)前中國(guó)經(jīng)濟(jì)[J];現(xiàn)代商業(yè);2011年09期
5 何W,
本文編號(hào):1428873
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1428873.html
最近更新
教材專著