基于分組技術(shù)和松馳交貨時間窗的調(diào)度博弈
本文關(guān)鍵詞:基于分組技術(shù)和松馳交貨時間窗的調(diào)度博弈 出處:《浙江工商大學》2017年碩士論文 論文類型:學位論文
更多相關(guān)文章: 調(diào)度博弈 價值分配機制 分組加工技術(shù) 松弛交貨期 松弛交貨時間窗 調(diào)度 合作博弈
【摘要】:博弈論是最受諾貝爾獎垂青的熱點論題,在經(jīng)濟學上是一個非常重要的理論概念,它的產(chǎn)生使經(jīng)濟學產(chǎn)生了革命性的變革。它在繼承和發(fā)展了傳統(tǒng)經(jīng)濟學的情況下,使得一些經(jīng)濟領(lǐng)域的分析產(chǎn)生了質(zhì)的飛躍。由于博弈論強大的現(xiàn)實性,對我國的經(jīng)濟改革具有著重要的指導意義。合作博弈是博弈論中非常重要的一塊內(nèi)容,合作博弈的研究領(lǐng)域非常的廣泛,能夠應用于許多的領(lǐng)域并形成一系列的合作博弈問題模型,使用合作博弈理論研究實際問題往往能夠進行深入的探索,并得到許多有意義的結(jié)論和管理上的暗示。在如今這個充滿著競爭的大環(huán)境下,所有的行業(yè)都面臨著巨大的壓力,制造業(yè)也在所難免,為了生存,他們早已從傳統(tǒng)的單一品加工模式過渡到了多品種加工模式。這種模式的轉(zhuǎn)變?yōu)樗麄儙砝娴耐瑫r也帶來了不少的加工制造難題:生產(chǎn)效率低下、生產(chǎn)成本過大等問題。分組技術(shù)作為一種專門針對多品種加工模式的管理方式很好的解決了這類問題。在我國,分組技術(shù)已經(jīng)被應用的非常廣泛并且效果顯著,特別是大型印刷業(yè)、卷煙制造業(yè)等行業(yè)。用于提高企業(yè)自身競爭力還有一個有利的因素:按時交貨。窗時調(diào)度問題就是在這種背景下產(chǎn)生的。不同于現(xiàn)有的研究文獻中研究的所有訂單使用相同的交貨期或者交貨期窗口,本文研究了每一個訂單都將擁有一個屬于自己的交貨期或者交貨窗口。服務業(yè)在當今這個充滿競爭的大環(huán)境中的情況也不容樂觀,企業(yè)為了在服務業(yè)中占有一席之地,必須要提高自身的競爭力,因此,如何提高服務業(yè)中企業(yè)的競爭力是本文研究的一大重點。據(jù)此,本文研究了兩類調(diào)度問題,分別是:基于分組技術(shù)和松弛交貨期的調(diào)度問題以及基于分組技術(shù)和松弛交貨時間窗的調(diào)度問題。除此之外,本文還構(gòu)建了一個同時適應于這兩類調(diào)度問題的調(diào)度博弈。與研究傳統(tǒng)的調(diào)度問題相同的是,我們要給出相應的調(diào)度問題的最優(yōu)排序;不同的是,我們考慮到了,當客戶在接受服務的時候,都秉承著先到先服務的原則,他們?yōu)槭裁磿敢飧淖冏约旱脑柬樞?按照這個可能使他們推后服務的最優(yōu)的排序排列,使得企業(yè)的利益最大化?于是,我們在這兩個調(diào)度問題上引入了合作博弈理論,構(gòu)建了同時適應于這兩類調(diào)度問題的調(diào)度博弈,并且研究出了相應的價值分配機制去激勵客戶們重排列他們的位置而達到最優(yōu)排序,此時,企業(yè)將達到利益最大化。除此之外,本文對所給出的價值分配機制均作了相應的證明。
[Abstract]:Game theory is a hot topic most favored of the Nobel prize, is a very important concept in economics, it makes economics produced revolutionary change. It developed in succession and traditional economic situation, which makes the analysis of some sectors of the economy to produce a qualitative leap. As the game theory of reality strong, has the important guiding significance to China's economic reform. Cooperative game is a very important content in the research field of game theory, cooperative game is very broad, can be applied in many fields and the formation of a series of issues listed in the cooperative game model, using cooperative game theory to study practical problems are often able to to conduct in-depth exploration, and obtained many meaningful conclusions and management implications. In today's competitive environment, all industries are facing great pressure, system The manufacturing industry also can hardly be avoided, in order to survive, they had to processing multi product transition from the traditional single product processing mode. The change of this kind of mode for the benefit they also brought a lot of manufacturing problems: low production efficiency, production cost is too high. As a specific packet processing mode many varieties of good management to solve the problem. In China, the grouping technology has been applied widely and the effect is significant, especially for large printing industry, cigarette manufacturing industry and other industries. To improve the competitiveness of enterprises is also a favorable factor: on time delivery scheduling problem is produced in the window under this kind of background. All orders are different from the existing literature in the study using the same delivery or delivery time window is studied in this paper. Each order will have a Their own delivery or delivery window. Service industry in today's competitive environment is not optimistic, enterprises in order to occupy a space for one person in the service sector, must improve their competitiveness, therefore, how to improve the service industry competitiveness is a major focus of this study. Accordingly in this paper, two kinds of scheduling problems are: packet technology and delivery scheduling relaxation period and scheduling problem of grouping and relaxation time of delivery window based. In addition, this paper also constructs a while adapting to the two kinds of scheduling problems. The same game scheduling and scheduling problem of traditional is that the optimal ordering we want to give the corresponding scheduling problem; the difference is, we consider that, when customers receive service, with first principle of service, they are crying. You would be willing to change their original order, according to the best this may enable them to push service after the sort order, to maximize the interests of enterprises? Then, we introduce the cooperative game theory in these two scheduling problems, constructed and adapted to the two kinds of scheduling scheduling problem and asked the game, study the value of the corresponding allocation mechanism to motivate customers rearrange their positions and reach the optimal schedule, at this time, the enterprise will achieve maximum benefit. In addition, the value distribution mechanism for given all the corresponding proof.
【學位授予單位】:浙江工商大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F224.32;F719
【參考文獻】
相關(guān)期刊論文 前10條
1 范雁鵬;趙傳立;;帶有交貨期和加工時間可控的單機排序問題[J];重慶師范大學學報(自然科學版);2013年03期
2 郭玲;趙傳立;;帶有公共交貨期窗口和加工時間可控的單機排序問題[J];重慶師范大學學報(自然科學版);2012年06期
3 鮑新中;劉澄;張建斌;;合作博弈理論在產(chǎn)學研合作收益分配中的應用[J];科學管理研究;2008年05期
4 鄭君君;劉恒;陳京華;;供應鏈伙伴的合作博弈研究[J];科技進步與對策;2006年07期
5 薛利敏;;夏普利值在利益分配中的應用[J];商場現(xiàn)代化;2006年08期
6 趙洪鑾;王驍力;亓興勤;;公共交貨期窗口待定的單機成組分批排序[J];山東大學學報(理學版);2006年01期
7 魏紀泳,湯書昆,崔浩,江文奇;基于利益相關(guān)者合作博弈的決策優(yōu)化與收益分配[J];運籌與管理;2005年02期
8 李軍林;李巖;;合作博弈理論及其發(fā)展[J];經(jīng)濟學動態(tài);2004年09期
9 顧新,郭耀煌,羅利;知識鏈成員之間利益分配的二人合作博弈分析[J];系統(tǒng)工程理論與實踐;2004年07期
10 陳偉,查迎春;關(guān)于成本分攤的合作博弈方法[J];運籌與管理;2004年02期
,本文編號:1369959
本文鏈接:http://sikaile.net/jingjifazhanlunwen/1369959.html