天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 教育論文 > 體育論文 >

小腿外加負(fù)荷對(duì)短跑最大速度階段下肢神經(jīng)肌肉征召特性的影響

發(fā)布時(shí)間:2018-09-13 09:04
【摘要】:研究背景與目的:短跑的研究最早可以追溯到1920年,隨著多年的研究,對(duì)影響短跑的生物力學(xué)因素,包括其肌肉激活情況的探究逐漸清晰。前人的研究發(fā)現(xiàn)跑速和肌肉激活程度之間存在密切聯(lián)系,神經(jīng)系統(tǒng)能夠通過控制肌肉的預(yù)激活或共收縮活動(dòng)實(shí)現(xiàn)改變運(yùn)動(dòng)表現(xiàn)的結(jié)果。這些指標(biāo)能夠反映神經(jīng)系統(tǒng)對(duì)環(huán)境(例如:負(fù)荷)改變做出的控制調(diào)整。抗阻沖刺訓(xùn)練是提升沖刺能力的一種常用訓(xùn)練方法。肢體末端綁負(fù)一定質(zhì)量作為外加負(fù)荷被認(rèn)為能夠在最大限度不改變動(dòng)作技術(shù)的前提下達(dá)到抗阻訓(xùn)練的目的。下肢增加外加負(fù)荷的訓(xùn)練方法已經(jīng)廣泛被接受并使用,然而此種訓(xùn)練中肌肉激活情況會(huì)發(fā)生怎樣的變化,神經(jīng)系統(tǒng)會(huì)做出怎樣調(diào)整仍然有待研究。本研究的目的在于探究下肢綁負(fù)質(zhì)量的抗阻訓(xùn)練方法對(duì)短跑最大速度途中跑肌肉激活情況的影響,并探討其神經(jīng)肌肉的征召特性,為此訓(xùn)練方法提供理論支持。研究方法:于室內(nèi)田徑場(chǎng)標(biāo)準(zhǔn)百米跑道,使用三維紅外高速攝影系統(tǒng)(200Hz)、三維測(cè)力臺(tái)(1000Hz)、表面肌電采集系統(tǒng)(4000Hz),采集13名專業(yè)短跑運(yùn)動(dòng)員最大速度下途中跑運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)以及表面肌電數(shù)據(jù)。在小腿增加不同的外加負(fù)荷(0%、10%、15%小腿質(zhì)量)。劃分階段并計(jì)算下肢大腿股直肌、股外側(cè)肌、股內(nèi)側(cè)肌、股二頭肌肌電數(shù)據(jù)在不同時(shí)期的均方根振幅(MVC標(biāo)準(zhǔn)化)。計(jì)算指標(biāo)包括時(shí)空參數(shù),各時(shí)期各肌肉激活情況以及激活程度比例。統(tǒng)計(jì)學(xué)方法采用單因素重復(fù)測(cè)量方差分析(one way repeated ANOVA),顯著水平定為P0.05。研究結(jié)果:1、步頻、跑速隨外加負(fù)荷質(zhì)量的增加出現(xiàn)顯著降低。并在無負(fù)荷條件和15%小腿質(zhì)量負(fù)荷條件之間差異明顯(P0.05,P0.05)。支撐期時(shí)長(zhǎng)在三種負(fù)荷條件下均顯著增長(zhǎng)(P0.05,P0.05)。2、股直肌預(yù)激活程度(著地前50ms均方根振幅)隨外加質(zhì)量的增加出現(xiàn)增強(qiáng)的趨勢(shì),這與其余三塊肌肉的變化相異。著地前肌肉共激活程度(股直肌與股二頭肌均方根振幅之比)出現(xiàn)增強(qiáng)。3、前擺期股直肌的激活貢獻(xiàn)比例(前擺期股直肌標(biāo)準(zhǔn)化后均方根振幅與前擺期四塊肌肉標(biāo)準(zhǔn)化后均方根振幅之和的比值)顯著下降,差異表現(xiàn)在無負(fù)荷和10%小腿質(zhì)量負(fù)荷兩種條件之間(P0.05)。股二頭肌推進(jìn)期的激活貢獻(xiàn)比例(股二頭肌推進(jìn)期均方根振幅與股二頭肌四個(gè)時(shí)期均方根振幅之和的比值)在三個(gè)負(fù)荷條件下都顯著增加(P0.05,P0.05)。結(jié)論:肢體外加負(fù)荷后,步頻下降、支撐期時(shí)長(zhǎng)增加,著地前肌肉預(yù)激活及共收縮程度的增強(qiáng),股直肌和股二頭肌在前擺期和推進(jìn)期的激活貢獻(xiàn)度發(fā)生改變。這些變化可視為神經(jīng)系統(tǒng)針對(duì)肢體質(zhì)量變化這種改變做出的征召調(diào)整,長(zhǎng)期練習(xí)有產(chǎn)生神經(jīng)適應(yīng)提高運(yùn)動(dòng)成績(jī)的潛在可能。
[Abstract]:Background & objective: the research of sprint can be traced back to 1920. With many years of research, the biomechanical factors affecting sprint, including muscle activation, have become more and more clear. Previous studies have found that there is a close relationship between running speed and muscle activation, and that the nervous system can change motor performance by controlling muscle pre-activation or co-contraction. These indicators reflect the nervous system's control over changes in the environment (e. G. Load). Resistance sprint training is a common training method to improve sprint ability. It is believed that the anti-resistance training can be achieved without changing the movement technique to the maximum extent as the body end bound negative certain mass as the external load. The training method of increasing the external load of lower extremities has been widely accepted and used. However, how the muscle activation will change and how the nervous system will adjust remains to be studied. The purpose of this study is to explore the influence of the anti-resistance training method with negative mass on the muscle activation of sprint in the course of maximum speed, and to explore the characteristics of neuromuscular recruitment, and to provide theoretical support for the training method. Methods: using three dimensional infrared high speed photography system (200Hz), three dimensional dynamometer (1000Hz) and surface electromyography (4000Hz) to collect the kinematics of 13 professional sprinters at maximum speed on the standard 100-meter track in indoor track and field, three dimensional infrared high-speed photography system (200Hz), three-dimensional dynamometer (1000Hz) and surface electromyography acquisition system (4000Hz) were used. Kinetic and surface electromyoelectric data. Add a different amount of extra load to the calf (0 / 10 / 10 / 15% leg mass). The mean square amplitude (MVC) of the rectus femoris muscle, lateral thigh muscle, medial femoral muscle and biceps femoris were calculated in different stages. The parameters of calculation include the parameters of time and space, the muscle activation and the ratio of activation degree in each stage. The significant level of (one way repeated ANOVA), of single factor repeated measurement was P 0.05. The results show that the step frequency and running speed decrease significantly with the increase of external load mass. There was significant difference between no load condition and 15% leg mass load condition (P 0.05). The duration of the support period increased significantly under the three loading conditions (P0.05P05) .2The preactivation degree of rectus femoris (the amplitude of root mean square (RMS) of 50ms before landing) increased with the increase of external mass, which was different from the change of the other three muscles. The degree of co-activation (the ratio of RMS amplitude of rectus femoris to biceps femoris) increased by 0.3, and the ratio of the activation contribution of rectus femoris in anterior pendulum period (RMS amplitude after standardization of anterior pendulum muscle and quadrilateral muscle in anterior pendulum phase) was increased. The ratio of the sum of the amplitude of the root mean square (RMS) decreased significantly after quasi-transformation. The difference was between non-load and 10% leg mass load (P0.05). The ratio of activation contribution of biceps femoris (the ratio of RMS amplitude in biceps femoris to the sum of RMS amplitude in four periods of biceps femoris) increased significantly under three loading conditions (P0.05 P 0.05). Conclusion: after limb loading, the step frequency decreased, the duration of support increased, the preactivation and co-contraction of the muscle before landing increased, and the contribution of rectus femoris and biceps femoris during the forward pendulum and propulsion period changed. These changes can be regarded as the recruitment adjustment of the nervous system in response to the changes in body mass, and long-term exercise has the potential to produce neural adaptation and improve motor performance.
【學(xué)位授予單位】:上海體育學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:G822.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前1條

1 張存軍;南雙齊;;提高直吹式制粉系統(tǒng)火電機(jī)組的加負(fù)荷速度的方法[J];中國(guó)電力教育;2009年S2期

相關(guān)碩士學(xué)位論文 前1條

1 莊薇;小腿外加負(fù)荷對(duì)短跑最大速度階段下肢神經(jīng)肌肉征召特性的影響[D];上海體育學(xué)院;2017年

,

本文編號(hào):2240691

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jiaoyulunwen/tylw/2240691.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶eedaf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com