視野受限條件下的行人運(yùn)動(dòng)實(shí)驗(yàn)與模型研究
[Abstract]:With the rapid development of the economy and society, various complex construction facilities have springing up. At the same time, with the increase of pedestrian travel frequency and the increase of large public activities, large crowds often appear in some public places such as schools, gymnasiums, subway stations and railway stations. In the high density population environment, the individual movement is serious. At present, most of the studies on pedestrian evacuation are concentrated in the case of normal pedestrian vision and good visibility, however, when the smoke or other causes caused by the fire and other causes cause the breakdown of the power lighting system, the visibility of the pedestrians will be reduced, and the vision of pedestrians will be different at this time. In order to obtain the basic data of the pedestrian movement under the limited field of vision, we first carried out a basic single row pedestrian movement experiment. In the later period, we found pedestrians based on the experimental video and the trajectory analysis. With the increase of the density of personnel, the lateral pendulum of the pedestrian path increases with the increase of the density of people. With the decrease of visibility, the phenomenon of high density down stop begins to dominate the traffic and extends to the medium density, and the relationship between the forward distance and the velocity can be divided into limited motion. In the two stage of free movement, the correlation between the forward distance and the speed of motion is becoming weaker and weaker, while in the free movement stage, the free movement speed of pedestrians under different transmittance rates conforms to the Gauss distribution (vLT=0.3% to N (1.31,0.072), vLT=0.1% to N (0.71,0.092) and vLT=0.0%. N (0.45,0.102)); the relationship between density and flow can be roughly divided into three stages: the free flow stage, the maximum flow stage and the congestion flow stage. The transmittance rate is 0.3%, the maximum flow rate under 0.1% and 0% are 1.3s-1,1.1s-s and 0.9s-1 respectively. The evacuation experiment and model simulation were carried out in two kinds of restricted and completely restricted conditions. In some restricted supermarket evacuation experiments, some typical behaviors of pedestrians were observed, including following behavior, helping behavior and finding dependent behavior. Then a questionnaire was designed to further study the pedestrian evacuation under the limited view. There are some differences between the results of the volume and the experimental results. Finally, an evacuation model of pedestrian typical behavior is constructed. The reliability of the model is verified by the high agreement between the simulation results and the experimental results in different scenes. The experimental results show that pedestrians will first follow the current orientation. The pedestrians will move along the left side and move along the left side of the wall when the wall is found. Then the pedestrians will continue to move along the wall. In the course of the movement, the pedestrian will take different strategies to solve the conflict with others until the exit is found. In addition, the T test results show that the speed of pedestrians moving along the wall is greater than that of the unfound wall. Then, based on the experimental observation and analysis results, the multiple grid personnel evacuation model was established, and the typical motion characteristics of the rows in the experiment were simulated. Finally, the same points and different points were found by comparing the evacuation of the normal field of vision and the completely limited field of vision. In the medium distribution, the whole evacuation time is not very different; the evacuation time of pedestrians in the two field of vision increases with the increase of the initial personnel density; the increase of the number of exits can reduce the time of evacuation and the effect is more obvious in the case of completely limited field of vision; the time interval of the evacuation process shows a power law relationship through the time interval of the exit. The difference is that the pedestrian movement is faster and the evacuation distance is shorter in the normal field of vision, so the evacuation time is obviously shorter than that under the complete confinement of the field of vision; the increase of the exit width is very favorable to the evacuation in the normal field of vision and has little effect on the sparse dispersion under the completely limited field of vision; in the normal field of vision evacuation Most of the pedestrians are concentrated in the vicinity of the exit, and the high density area around the wall under the full limit of vision. Through the above study we have a deeper understanding of the pedestrian movement and evacuation under the limited view of vision. Then we will discuss how to conduct evacuation guidance to the pedestrian in the restricted environment. We set up a personnel evacuation model considering the presence of the guide. There are two types of pedestrians in the model: the guide and the followers. Secondly, the effects of the number, type, distribution, velocity and guidance strategy on the evacuation time are simulated. The guide can be easily identified by other pedestrians in the crowd, and thus can play a greater guiding role. The evacuation time has been reduced by 7% than that of the unidentified guide. The guide operator in the dynamic guidance expands the guide range through its own movement, and the evacuation time is reduced by 20% under the static guidance; the manpower cost and the evacuation time are considered comprehensively. There is a relatively superior number of guides; the uniform distribution of the guide can cover a larger guide area and is more conducive to the whole evacuation, but it is related to the distribution of other pedestrians in practice; the speed of the guide is about 75% of the other pedestrian speed, and the effect of the evacuation Guide is optimal; the different evacuation guidance strategies are compared. The shortest evacuation time is taken into consideration of the distance between the target pedestrians and the number of pedestrians around the target, and the communication and cooperation between the multiple guides can avoid the conflict when choosing the guide target, and the overall evacuation efficiency is improved by 6%.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU998.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邵祖峰;行人安全性研究分析及預(yù)防[J];北京汽車;2003年04期
2 劉小明,陳艷艷,安志強(qiáng);北京奧運(yùn)行人交通組織初探[J];國外城市規(guī)劃;2004年01期
3 ;福州:"行人交通意識(shí)"調(diào)查[J];安全與健康;2004年20期
4 李珊珊;錢大琳;王九州;;考慮行人減速避讓的改進(jìn)社會(huì)力模型[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2012年03期
5 ;行人闖紅燈何時(shí)休?[J];汽車與安全;2009年07期
6 陳然,董力耘;中國大都市行人交通特征的實(shí)測和初步分析[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
7 孫智勇;葛書芳;榮建;李美玲;;行人交通的數(shù)據(jù)采集方法研究[J];北京工業(yè)大學(xué)學(xué)報(bào);2006年06期
8 薛智規(guī);胡列格;;優(yōu)化行人過街交通組織的方法研究[J];公路與汽運(yùn);2007年01期
9 張貴賓;李明輝;趙金鳳;萬晶晶;;行人過街需要分析研究[J];道路交通與安全;2007年03期
10 吳玲玲;;建設(shè)以人為本的行人過街設(shè)施[J];交通與運(yùn)輸;2007年05期
相關(guān)會(huì)議論文 前8條
1 鮑涵;;行人與機(jī)動(dòng)車交通系統(tǒng)優(yōu)化研究[A];轉(zhuǎn)型與重構(gòu)——2011中國城市規(guī)劃年會(huì)論文集[C];2011年
2 張滋容;黃如妙;施學(xué)榮;陳文粹;周欣怡;;臺(tái)北市“禮讓行人”之推動(dòng)工作與展望[A];構(gòu)建生態(tài)人文交通 促進(jìn)經(jīng)濟(jì)跨越發(fā)展——第十九屆海峽兩岸都市交通學(xué)術(shù)研討會(huì)論文選編[C];2011年
3 景超;王殿海;梁瀟;;路段人行橫道行人過街行為心理分析[A];可持續(xù)發(fā)展的中國交通——2005全國博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(上冊)[C];2005年
4 鄭為中;彭征;鐘淑琴;;構(gòu)建以人為本的城市空間導(dǎo)向信息服務(wù)系統(tǒng)——廣州市行人指示標(biāo)識(shí)系統(tǒng)解析[A];第九次全國城市道路與交通工程學(xué)術(shù)會(huì)議論文集[C];2007年
5 高鵬;王田田;周志永;萬浩;;青島市世界園藝博覽會(huì)行人交通三維仿真與結(jié)果評估[A];城市時(shí)代,協(xié)同規(guī)劃——2013中國城市規(guī)劃年會(huì)論文集(01-城市道路與交通規(guī)劃)[C];2013年
6 陳茜;謝鑫鑫;;大型活動(dòng)行人消散仿真模擬[A];2007第三屆中國智能交通年會(huì)論文集[C];2007年
7 王中岳;王嘯君;;軌道車站及地下空間行人仿真模型行為參數(shù)標(biāo)定[A];面向低碳經(jīng)濟(jì)的隧道及地下工程技術(shù)——中國土木工程學(xué)會(huì)隧道及地下工程分會(huì)隧道及地下空間運(yùn)營安全與節(jié)能環(huán)保專業(yè)委員會(huì)第一屆學(xué)術(shù)研討會(huì)論文集[C];2010年
8 徐紹偉;姜英華;張國堂;周士琪;;行人與機(jī)動(dòng)車乘員交通損傷及傷殘的比較研究[A];中國法醫(yī)學(xué)最新科研與實(shí)踐(一)——全國第六次法醫(yī)學(xué)術(shù)交流會(huì)論文精選[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 和潤灃;行人交通違法治理還需多管齊下[N];蘭州日報(bào);2012年
2 袁云才;行人闖紅燈挨罰警醒交通陋習(xí)[N];長沙晚報(bào);2012年
3 楊濤;行人“生病”,單位吃藥?[N];中國經(jīng)濟(jì)時(shí)報(bào);2007年
4 何雪華 李佳亮;廣州:行人違法通報(bào)單位[N];人民公安報(bào)·交通安全周刊;2007年
5 滕朝陽;由違法行人的血得到的教訓(xùn)[N];人民公安報(bào)·交通安全周刊;2007年
6 楊濤;行人“犯病”讓單位“吃藥”有效嗎[N];中國消費(fèi)者報(bào);2007年
7 張仕洪;荊門專項(xiàng)整治行人交通違法[N];湖北日報(bào);2008年
8 陳志剛 吳存慶;蘭州集中整治行人交通違法[N];人民公安報(bào)·交通安全周刊;2008年
9 朱忠保;行人違章與環(huán)保缺位[N];中國保險(xiǎn)報(bào);2010年
10 楊濤;株連式治理有悖法治精神[N];法制日報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 田歡歡;行人流和疏散動(dòng)力學(xué)的宏微觀建模和模擬研究[D];上海大學(xué);2015年
2 劉曉棟;行人相向流和進(jìn)入流的實(shí)驗(yàn)與模型研究[D];中國科學(xué)技術(shù)大學(xué);2016年
3 吳昊靈;考慮異質(zhì)性的城市軌道交通車站交通設(shè)施行人流仿真研究[D];北京交通大學(xué);2016年
4 李明華;不同場景中行人疏散微觀仿真建模及疏散誘導(dǎo)優(yōu)化研究[D];北京交通大學(xué);2016年
5 李之紅;基于差異化個(gè)體特性的密集客流疏散行為分析與建模[D];北京交通大學(xué);2017年
6 傅麗碧;考慮人員行為特征的行人與疏散動(dòng)力學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2017年
7 郭寧;行人交通特征的實(shí)驗(yàn)和模型研究[D];中國科學(xué)技術(shù)大學(xué);2017年
8 趙瑩瑩;基于全時(shí)空信息的行人過街運(yùn)行機(jī)理研究[D];吉林大學(xué);2017年
9 曹淑超;視野受限條件下的行人運(yùn)動(dòng)實(shí)驗(yàn)與模型研究[D];中國科學(xué)技術(shù)大學(xué);2017年
10 孫立光;步行設(shè)施內(nèi)的行人行為微觀仿真模型研究[D];清華大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 欒慶熊;行人同伴群交通行為建模與仿真分析[D];昆明理工大學(xué);2015年
2 劉勁宏;交叉口行人過街通行能力與過街設(shè)施選取研究[D];長安大學(xué);2015年
3 李曉旭;汽車與行人碰撞事故分析方法研究[D];長安大學(xué);2015年
4 范簫翔;M1類車輛致行人下肢損傷的生物力學(xué)機(jī)制研究[D];重慶理工大學(xué);2015年
5 劉澤高;多出口室內(nèi)行人疏散模型及其應(yīng)用的研究[D];廣西大學(xué);2015年
6 高彥超;路段平面過街設(shè)施合理設(shè)置研究[D];北京工業(yè)大學(xué);2015年
7 龐雅靜;信號(hào)控制交叉口行人過街安全評價(jià)技術(shù)研究[D];河北工業(yè)大學(xué);2015年
8 劉麗娟;城市道路路段行人過街行為研究[D];長沙理工大學(xué);2014年
9 蔡曉斐;重慶主城區(qū)行人過街交通特性研究[D];重慶交通大學(xué);2015年
10 張勤;考慮行人因素的交叉口信號(hào)最優(yōu)控制研究[D];重慶交通大學(xué);2015年
,本文編號(hào):2161680
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2161680.html