200MPa級(jí)高強(qiáng)人造巖體制作技術(shù)研究
[Abstract]:With the wide application of mechanical rock breaking technology in underground engineering, the research on rock breaking mechanism has become a hot spot at home and abroad. Because of the difficulty of sampling large-volume rock mass in the field, the development of indoor artificial rock mass should be solved urgently. Therefore, this paper studies the manufacture technology of high strength artificial rock mass, and solves the problem of hard to get mass rock samples in the field. Firstly, the optimum mix ratio and maintenance system of reactive powder concrete (RPC) are determined by comparison and analysis of sample test. Secondly, by using the numerical simulation method, by studying the distribution law of the thermal stress field in the mass rock mass, the effective measures can be obtained to reduce the internal tensile stress of the mass rock mass. The main research results are as follows: (1) sample test under atmospheric pressure. Seven factors, such as the fineness modulus of quartz sand, the amount of water reducing agent, the ratio of silica fume to fly ash, the ratio of sand to binder, the ratio of water to binder, the amount of compound mineral admixture and the amount of expansive agent, etc. in the design process of RPC concrete mixture were analyzed. The effects of various factors on the fluidity and compressive strength of RPC concrete are obtained. Based on the above two indexes, the optimum mix ratio of RPC concrete under normal pressure curing condition is obtained. (2) specimen test under different curing conditions. By studying the variation of compressive strength and porosity of RPC concrete under four different curing conditions, it is found that the compressive strength of RPC concrete increases more under high temperature and high pressure than that of high temperature curing (the lower the water-binder ratio, the lower the ratio of water to binder). The more obvious the effect is, the more the porosity decreases. This shows that high temperature and high pressure curing can improve the microstructure of RPC concrete, improve the compactness of RPC concrete, and then improve its compressive strength. Based on this, the curing system of high temperature and high pressure is put forward. The RPC concrete with strength up to 200MPa is obtained. (3) the numerical simulation results show that the temperature field distribution of different sizes of rock mass is compared with that of different sizes. The results show that no matter what outer boundary is given to medium volume rock mass, The internal temperature field is close to the uniform temperature field, while the large temperature gradient (.2) exists in the mass rock mass. It is concluded that the external surface of mass rock mass produces a large tensile stress at the stage of cooling. 3) through the comparative analysis of three different ways of lowering temperature and pressure, The results show that the method of decreasing temperature first and then reducing pressure can effectively reduce the maximum tensile stress value of mass rock mass by controlling the rate of lowering temperature and pressure. It is concluded that the temperature stress in the mass rock mass can be effectively reduced by decreasing the cooling and lowering pressure velocity simultaneously. In this paper, the optimum mixture ratio of RPC concrete is given through the experimental study of samples, and the optimal curing system is put forward. The optimal path of cooling and reducing pressure is obtained by numerical simulation. It is of guiding significance for the manufacture of high strength artificial rock mass without macroscopical defects in large volume and provides a prerequisite for the laboratory to carry out the research of mechanical rock breakage.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU528
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 辛雁清;;混凝土圓柱體試件和立方體試件抗壓強(qiáng)度關(guān)系的分析[J];中國(guó)水能及電氣化;2015年07期
2 鄭文忠;王睿;王英;;活性粉末混凝土熱工參數(shù)試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2014年09期
3 廖娟;張濤;戢文占;王寶華;王冬雁;張東華;張楠;;養(yǎng)護(hù)制度對(duì)活性粉末混凝土(RPC)強(qiáng)度及韌性的影響[J];四川建筑科學(xué)研究;2013年06期
4 楊勝江;;不同養(yǎng)護(hù)制度對(duì)RPC混凝土力學(xué)性能的試驗(yàn)[J];低溫建筑技術(shù);2013年07期
5 王立聞;龐寶君;林敏;張凱;陳勇;王少恒;;活性粉末混凝土高溫后沖擊力學(xué)性能研究[J];振動(dòng)與沖擊;2012年16期
6 龐寶君;王立聞;陳勇;林敏;張凱;王少恒;;高溫后活性粉末混凝土SHPB試驗(yàn)研究[J];建筑材料學(xué)報(bào);2012年03期
7 王飛;殷新鋒;方志;奉策紅;;RPC箱型橋墩抗震性能的試驗(yàn)研究與數(shù)值分析[J];實(shí)驗(yàn)力學(xué);2012年02期
8 彭艷周;陳凱;胡曙光;;鋼渣粉顆粒特征對(duì)活性粉末混凝土強(qiáng)度的影響[J];建筑材料學(xué)報(bào);2011年04期
9 陳友治;宋正林;許閩;曹曉梅;李儒光;;天然硅質(zhì)摻合料活性粉末混凝土(RPC)研究[J];武漢理工大學(xué)學(xué)報(bào);2011年06期
10 陳友治;許閩;宋正林;李儒光;林家超;;超細(xì)活性硅粉對(duì)混凝土的物理力學(xué)性能影響研究[J];混凝土;2011年05期
相關(guān)碩士學(xué)位論文 前5條
1 曾平;大混合材摻量超高強(qiáng)混凝土配制技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2014年
2 張妮;減縮型聚羧酸減水劑的合成與作用機(jī)理研究[D];華南理工大學(xué);2012年
3 沈冰;贛龍鐵路梅江特大橋三線橋墩混凝土水化熱效應(yīng)研究[D];中南大學(xué);2012年
4 宋正林;天然硅質(zhì)摻合料活性粉末混凝土研究[D];武漢理工大學(xué);2011年
5 何雁斌;活性粉末混凝土(RPC)的配制技術(shù)與力學(xué)性能試驗(yàn)研究[D];福州大學(xué);2003年
,本文編號(hào):2147914
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/2147914.html