基于常規(guī)水質(zhì)參數(shù)的供水管網(wǎng)特征污染物分類方法研究
發(fā)布時間:2018-05-01 04:39
本文選題:常規(guī)水質(zhì)參數(shù) + 特征污染物 ; 參考:《浙江大學》2017年碩士論文
【摘要】:隨著城市供水安全受到越來越嚴峻的挑戰(zhàn),構(gòu)建能夠?qū)Τ鞘泄┧芫W(wǎng)水質(zhì)進行持續(xù)在線監(jiān)控的預警系統(tǒng)意義重大。在檢測出水污染事件之后,為了更好地提供污染物特性等應急信息,需要進一步識別污染物的具體類別。可能引起水體污染的物質(zhì)種類繁多,且很多沒有針對性的檢測儀器。面對這一狀況,本文研究了污染物與常規(guī)水質(zhì)參數(shù)響應之間的關(guān)系,并基于此開展了污染物分類識別研究。論文主要工作和創(chuàng)新點如下:(1)研究了常規(guī)水質(zhì)參數(shù)與某些重金屬鹽、有機鹽和無機鹽污染物之間的相關(guān)響應規(guī)律,分析了不同監(jiān)測數(shù)據(jù)時間序列幅值變化特性,提出了利用這些因不同污染物而不同的變化特性及其組合信息,進行不同污染物的分類與識別的技術(shù)架構(gòu)。(2)研究了通過度量常規(guī)水質(zhì)參數(shù)組合信息之間的相似性判別污染物類型的技術(shù)方法。該方法首先采用自回歸模型進行水質(zhì)背景信號估計,再利用K均值聚類算法融合多個指標的預測殘差獲取污染物引起的水質(zhì)參數(shù)響應類別中心,最后采用相似性度量方法進行污染物識別。其中重點針對污染物識別過程中,常規(guī)水質(zhì)參數(shù)響應幅值受污染物濃度影響的問題,從理論上分析了余弦距離的特性,其主要度量的是水質(zhì)參數(shù)向量之間的夾角,因此受幅值改變的影響較小,在污染物分類識別中具有較好的效果。通過污染物注入實驗比較了歐式距離,馬氏距離,余弦距離等不同相似性度量方法在五種特征污染物上的識別效果,驗證了理論分析的正確性。(3)針對常規(guī)水質(zhì)參數(shù)與污染物濃度變化之間的非線性、各參數(shù)之間變化趨勢不一致以及訓練樣本不足等問題,提出基于SVM多分類模型進行污染物分類的方法?紤]到污染物注入初始階段錯分率高,論文引入分類概率,通過研究最大分類概率以及分類概率標準差,對樣本進行區(qū)分,避免在水質(zhì)參數(shù)波動信息不顯著情況下做出錯誤的單一決策。最后對相似性度量方法和SVM多分類模型在不同情況下的性能進行了詳細對比分析,明確了各自的性能優(yōu)勢和適用場合。(4)利用所研究的基于相似性度量的分類方法和基于SVM多分類模型的分類方法結(jié)合C#與MATLAB混合編程技術(shù),在實驗室模擬水質(zhì)監(jiān)測系統(tǒng)基礎上設計開發(fā)了管網(wǎng)水質(zhì)污染物分類軟件。該軟件具有特征污染物分類判別,特征庫動態(tài)更新,分類算法管理,分類結(jié)果展示等功能。
[Abstract]:As the security of urban water supply is facing more and more serious challenges, it is of great significance to construct an early warning system which can continuously monitor the water quality of urban water supply network. After the detection of water pollution events, in order to provide better emergency information such as pollutant characteristics, it is necessary to further identify the specific types of pollutants. There are many kinds of substances which may cause water pollution, and many untargeted detection instruments. In this paper, the relationship between pollutants and the response of conventional water quality parameters is studied, and the classification and identification of pollutants are carried out. The main work and innovation of this paper are as follows: (1) the correlation response between conventional water quality parameters and some heavy metal, organic and inorganic salt pollutants is studied, and the variation characteristics of time series amplitudes of different monitoring data are analyzed. It is proposed to use these information, which vary from pollutant to pollutant, and their combinations, The technical framework for classification and identification of different pollutants. Firstly, the autoregressive model is used to estimate the background signal of water quality, and then K-means clustering algorithm is used to fuse the prediction residuals of multiple indexes to obtain the response class center of water quality parameters caused by pollutants. Finally, the similarity measurement method is used to identify pollutants. Aiming at the problem that the response amplitude of conventional water quality parameters is affected by pollutant concentration in the process of pollutant identification, the characteristics of cosine distance are analyzed theoretically. The main measure is the angle between water quality parameter vectors. Therefore, the effect of amplitude change is relatively small, and it has better effect in pollutant classification and identification. The effects of different similarity measures, such as Euclidean distance, Markov distance and cosine distance, on the recognition of five characteristic pollutants were compared by pollutant injection experiments. The correctness of the theoretical analysis is verified. (3) aiming at the nonlinearity between the conventional water quality parameters and the change of pollutant concentration, the variation trend between the parameters and the shortage of training samples, etc. A method of pollutant classification based on SVM multi-classification model is proposed. Considering the high misclassification rate in the initial stage of pollutant injection, the classification probability is introduced, and the sample is distinguished by studying the maximum classification probability and the classification probability standard deviation. Avoid making a single wrong decision when the fluctuation information of water quality parameters is not significant. Finally, the performance of similarity measurement method and SVM multi-classification model in different cases are compared and analyzed in detail. It is clear that their respective performance advantages and applicable situation. (4) the classification method based on similarity measure and the classification method based on SVM multi-classification model are used to combine C # and MATLAB hybrid programming technology. Based on the laboratory simulation water quality monitoring system, the classification software of water pollution in pipe network is designed and developed. The software has the functions of distinguishing the characteristic pollutants, updating the feature database dynamically, managing the classification algorithm and displaying the classification results.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU991.2
【參考文獻】
相關(guān)期刊論文 前10條
1 孫玲芳;徐會;王成文;祁軍;;基于動態(tài)約簡的增量貝葉斯分類算法的研究[J];計算機應用與軟件;2015年03期
2 陳愛梅;李慧東;;MATLAB與C#混合編程在數(shù)字圖像處理中的應用[J];電腦開發(fā)與應用;2014年11期
3 王齡慶;馬飛燕;賈清;;蘭州市自來水局部苯指標超標事件應急處置分析[J];中國初級衛(wèi)生保健;2014年10期
4 張焱凱;包芳;王士同;;余弦距離下保護型遷移學習聚類算法[J];計算機工程與應用;2015年23期
5 梁中耀;劉永;盛虎;楊永輝;郭懷成;趙磊;賀彬;;滇池水質(zhì)時間序列變化趨勢識別及特征分析[J];環(huán)境科學學報;2014年03期
6 何慧梅;侯迪波;趙海峰;黃平捷;張光新;;基于多因子融合的水質(zhì)異常檢測算法[J];浙江大學學報(工學版);2013年04期
7 侯迪波;陳s,
本文編號:1827761
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1827761.html
最近更新
教材專著