基于環(huán)形耦合的直線電梯電磁懸浮控制系統(tǒng)研究
本文選題:磁懸浮導(dǎo)向系統(tǒng) 切入點:直線電梯 出處:《沈陽工業(yè)大學(xué)》2017年碩士論文
【摘要】:現(xiàn)今,無論在生產(chǎn)和生活方面,越來越多的領(lǐng)域應(yīng)用了磁懸浮科學(xué)技術(shù),在國內(nèi)的列車、軸承以及機床等領(lǐng)域的應(yīng)用已經(jīng)獲得了成功,但目前國內(nèi),磁懸浮技術(shù)在直線電梯領(lǐng)域的應(yīng)用還處于初級階段。在直線電梯運行過程中,由于該直線電梯的磁懸浮導(dǎo)向系統(tǒng)運行條件存在難以預(yù)測的變化,并且其自身的載重也將發(fā)生實時改變,并且其還將受到眾多不確定的外部干擾的影響。在此,選取直線電梯磁懸浮導(dǎo)向系統(tǒng)作為本文的研究對象,并且重點研究對直線電梯的四個x軸方向上的單磁懸浮裝置的同步控制控制方法。首先,本文詳細(xì)介紹了通過分析直線電梯的磁懸浮導(dǎo)向系統(tǒng)的結(jié)構(gòu)特征所得到的“Eight-Maglev”的直線電梯的控制結(jié)構(gòu)。并以水平面上的四個電磁懸浮導(dǎo)向裝置作為其研究對象,搭建x軸方向上的單磁懸浮裝置的數(shù)學(xué)模型,并且深入研究了該數(shù)學(xué)模型的特點。同時,考慮到該模型為非線性的,需要對其進行線性化處理,針對這一問題,本文使用狀態(tài)精確反饋線性化方法以保證該模型的精確非線性。其次,針對磁懸浮電梯導(dǎo)向系統(tǒng)的快速跟蹤性和魯棒性等問題,提出了自適應(yīng)模糊滑模-PID(Variable Universe Adaptive Fuzzy Sliding Mode-PID,VUFSC-PID)控制策略。采用將自適應(yīng)模糊滑?刂坪蚉ID控制相結(jié)合的控制方法,這種控制方法通過變論域模糊控制器調(diào)節(jié)參數(shù),實現(xiàn)參數(shù)的自適應(yīng)實時調(diào)整。利用Matlab在該控制策略下對單磁懸浮裝置進行仿真,并與傳統(tǒng)滑?刂坪蚉ID控制相比較,結(jié)果表明該控制方法可以有效的改善由于系統(tǒng)結(jié)構(gòu)導(dǎo)致的控制效果不穩(wěn)定的現(xiàn)象。最后,針對能夠影響多單磁懸浮裝置的同步誤差的多種因素,同時對主從控制、主令控制、交叉耦合控制、偏差耦合控制、環(huán)形耦合控制等進行結(jié)構(gòu)特征比較,并分析出上述控制結(jié)構(gòu)的優(yōu)點與不足,最終采用環(huán)形耦合控制結(jié)構(gòu)。由于單磁懸浮裝置之間存在機械耦合,本文采用模糊邏輯算法的位置補償器的環(huán)形耦合控制結(jié)構(gòu)來提高單磁懸浮裝置的同步運動精度。利用Matlab對主從控制、主令控制、環(huán)形耦合控制進行仿真,仿真結(jié)果表明環(huán)形耦合控制結(jié)構(gòu)相對于其他的幾種控制結(jié)構(gòu)保證系統(tǒng)在穩(wěn)定性和同步性能等方面有不同程度的提高。
[Abstract]:Nowadays, no matter in production and life, more and more fields have applied maglev science and technology, and have been successfully applied in train, bearing and machine tool fields in China, but at present, The application of maglev technology in the field of linear elevator is still in the primary stage. During the running of the linear elevator, the operating conditions of the maglev guiding system of the linear elevator are difficult to predict. And its load will be changed in real time, and it will also be affected by many uncertain external disturbances. In this paper, the linear elevator magnetic levitation guidance system is selected as the research object. The synchronous control method of the single magnetic levitation device in the four x-axis directions of the linear elevator is studied. First of all, This paper introduces in detail the control structure of "Eight-Maglev" linear elevator, which is obtained by analyzing the structural characteristics of the maglev guide system of the linear elevator, and takes four electric maglev guiding devices on the horizontal plane as its research object. The mathematical model of the single magnetic levitation device in the direction of x axis is built, and the characteristics of the mathematical model are studied in depth. Considering that the model is nonlinear, it is necessary to linearize it. In this paper, the state exact feedback linearization method is used to ensure the accurate nonlinearity of the model. Secondly, aiming at the problems of fast tracking and robustness of the magnetic levitation elevator guidance system, An adaptive fuzzy sliding mode Universe Adaptive Fuzzy Sliding Mode-PID-PID-VUFSC-PID-PID-VUFSC-PID-PID-VUFSC-PID-PID-VUFSC-PID-VUFSC-PID-PID-VUFSC-PID-PID-VUFSC-PID-PID-VUFSC-PID-PID-VUFSC-P@@. The single magnetic levitation device is simulated by Matlab under the control strategy and compared with the traditional sliding mode control and PID control. The results show that the control method can effectively improve the instability of the control effect caused by the system structure. Finally, aiming at many factors that can affect the synchronization error of the multi-single magnetic levitation device, the master-slave control and the master-order control are also discussed. The structure characteristics of cross coupling control, deviation coupling control and ring coupling control are compared, and the advantages and disadvantages of the above control structure are analyzed. Finally, the ring coupling control structure is adopted. In this paper, the loop coupling control structure of position compensator based on fuzzy logic algorithm is used to improve the synchronous motion accuracy of single magnetic levitation device. The master-slave control, master command control and ring coupling control are simulated by Matlab. The simulation results show that the loop coupling control structure can improve the stability and synchronization performance of the system in varying degrees compared with other control structures.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TU857
【參考文獻】
相關(guān)期刊論文 前10條
1 李慧;劉星橋;李景;孫飛飛;;多電機同步協(xié)調(diào)系統(tǒng)控制策略[J];電機與控制應(yīng)用;2014年04期
2 陳啟會;李群明;胥曉;;平面型磁懸浮平臺的結(jié)構(gòu)與分散控制[J];機械設(shè)計與研究;2013年02期
3 高琳;徐宗海;朱凱;李黎川;;錐形磁懸浮軸承的建模與解耦控制[J];中國電機工程學(xué)報;2013年06期
4 季明逸;游有鵬;;基于偏差耦合法的同步控制策略研究與實踐[J];中國制造業(yè)信息化;2012年21期
5 劉然;孫建忠;羅亞琴;孫偉;;基于環(huán)形耦合策略的多電機同步控制研究[J];控制與決策;2011年06期
6 劉然;孫建忠;羅亞琴;孫偉;;多電機滑模環(huán)形耦合同步控制策略研究[J];中國機械工程;2010年22期
7 劉少克;龍長林;陳貴榮;佘龍華;;高速磁懸浮列車新型導(dǎo)向電磁鐵分析[J];機車電傳動;2010年01期
8 彭輝;徐錦華;侯海良;;模糊控制在磁懸浮球系統(tǒng)實時控制中的應(yīng)用[J];控制工程;2009年03期
9 洪毅;;超高速磁浮電梯[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2008年04期
10 劉恒坤;施曉紅;常文森;;磁懸浮系統(tǒng)的非線性控制[J];控制工程;2007年05期
,本文編號:1656836
本文鏈接:http://sikaile.net/jianzhugongchenglunwen/1656836.html