基于GARCH-GPD-COPULA函數(shù)的資產(chǎn)組合風(fēng)險研究
[Abstract]:With the continuous change of financial markets, the correlation between financial assets is becoming more and more complex, showing nonlinear, asymmetric and tail-related characteristics. The analysis method based on linear correlation sometimes can not accurately reflect the correlation of financial market. At the same time, in reality, the rate of return on financial assets has the characteristics of sharp peak and thick tail, which obviously has non-normal characteristics and nonlinear correlation. Therefore, sometimes it is unreasonable to use the traditional VaR calculation method, so it is necessary to use a reasonable method to describe the actual distribution and correlation of the rate of return. By using the COPULA function method, a flexible multivariate distribution function can be constructed to describe the real distribution and correlation of the rate of return on financial assets, so that a more effective risk measurement model can be established. Therefore, it is of great theoretical value and application significance to use COPULA function to study the risk value of financial assets. In this paper, the GARCH model family is introduced, and the residual distribution of GARCH model is studied, and two kinds of thick tail distribution t distribution and GED distribution are introduced, and then the definition of generalized Pareto distribution (GPD) and the selection method of threshold value are given. Then, the definition and properties of COPULA function and five kinds of COPULA functions are introduced in detail, and the estimation method of COPULA function and the selection method of optimal COPULA function are given. On this basis, three VaR models, GARCH-COPULA,GPD-COPULA and GARCH-GPD-COPULA, are introduced to calculate the risk value. In the empirical part, the risk value (VaR). Of asset portfolio under different quartile is calculated by using historical simulation method and analysis method. Then, the risk value (VaR). Corresponding to GARCH-COPULA,GPD-COPULA,GARCH-GPD-COPUL of three models is calculated by Monte Carlo simulation method. Finally, the failure frequency method was used to test and compare the five kinds of results in 1%, 2%, 3%, 4%, 5%, 10% of the quartile, and the failure frequency method was used to test and compare the five kinds of results at 1%, 2%, 3%, 4% and 5%, respectively. The empirical results show that the failure rate of VaR calculated by GARCH-GPD-COPULA method is the lowest in the sample, which indicates that the estimated risk value is the closest to the real risk value. The innovation of this paper is mainly reflected in the following aspects: (1) the definition, classification and estimation method of COPULA function are summarized systematically and comprehensively. (2) when the GARCH model is used to fit the edge distribution, the residual error in the normal distribution is considered. According to the difference between t distribution and generalized error distribution (GED), the optimal GARCH model is selected. (3) on the basis of previous research on COPULA function, CARCH-COPULA and GPD-COPULA are combined to propose GARCH-GPD-COPULA function. And the corresponding empirical analysis is carried out.
【學(xué)位授予單位】:天津財(cái)經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:F224;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李鋒;劉澄;;基于極值理論的金融風(fēng)險研究[J];商業(yè)研究;2010年05期
2 歐陽資生,龔曙明;廣義帕累托分布模型:風(fēng)險管理的工具[J];財(cái)經(jīng)理論與實(shí)踐;2005年05期
3 余萍,龔金國;描述金融市場相關(guān)結(jié)構(gòu)的一種新工具——Copula[J];東莞理工學(xué)院學(xué)報;2005年05期
4 韋艷華,張世英;金融市場的相關(guān)性分析——Copula-GARCH模型及其應(yīng)用[J];系統(tǒng)工程;2004年04期
5 程炳巖;丁裕國;張金鈴;江志紅;;廣義帕雷托分布在重慶暴雨強(qiáng)降水研究中的應(yīng)用[J];高原氣象;2008年05期
6 司繼文,蒙堅(jiān)玲,龔樸;國內(nèi)外股票市場相關(guān)性的Copula分析[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2005年01期
7 任仙玲;張世英;;基于核估計(jì)及多元阿基米德Copula的投資組合風(fēng)險分析[J];管理科學(xué);2007年05期
8 韋艷華,張世英,孟利鋒;Copula理論在金融上的應(yīng)用[J];西北農(nóng)林科技大學(xué)學(xué)報(社會科學(xué)版);2003年05期
9 單國莉,陳東峰;一種確定最優(yōu)Copula的方法及應(yīng)用[J];山東大學(xué)學(xué)報(理學(xué)版);2005年04期
10 桂文林;韓兆洲;潘慶年;;POT模型中GPD“厚尾”性及金融風(fēng)險測度[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2010年01期
相關(guān)博士學(xué)位論文 前1條
1 花擁軍;極值理論在中國股市風(fēng)險度量中的應(yīng)用研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前2條
1 丁林榮;GPD模型與巨災(zāi)保險[D];華東師范大學(xué);2008年
2 王皓;極值理論在測度中國股市VaR中的應(yīng)用與比較[D];浙江大學(xué);2008年
,本文編號:2493004
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2493004.html