基于GARCH類和SV類模型的中國(guó)債券市場(chǎng)實(shí)證分析
[Abstract]:Volatility widely exists in various financial time series, is a core issue in the field of financial research. At present, there are two main models used to study the fluctuation of financial time series: one is the autoregressive conditional heteroscedasticity (ARCH) model, the other is the stochastic fluctuation (Sv) model. These two types of models have been further developed in recent years, such as the extended model of ARCH class model, the extended model of GARCH class model, the extended model of sv model, the thick tail sv model, and so on. At present, there have been some studies using these two models to simulate the financial market of our country, including stock market and option market. However, there is little research on bond market, so this paper uses these two kinds of models and their corresponding extended models to simulate the bond market of our country, and introduces a series of evaluation indexes. The volatility prediction ability of GARCH model and SV class model is compared objectively. In this paper, the TGARCH model and EGARCH model are used to analyze the yield data of national debt, enterprise bond and financial bond index. Then, according to the MCMC method, the SV-N,SV-T,SV-MN, in the Sv class model is analyzed. Bayesian analysis is performed on the SV-MT SV-Leverage model. The empirical results show that the bond market, the corporate bond market and the financial bond market all show some volatility clustering, peak thick tail and asymmetry. At the end of this paper, RMSE,MAE,LL and other evaluation indexes are introduced to compare the out-of-sample prediction ability of the model selected in this paper. The results show that the forecasting ability of the SV model is stronger than that of the GARCH model in the bond market of our country. Therefore, this paper draws a conclusion that the SV model can simulate the volatility of China's bond market better than the GARCH model.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F832.51;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白],張世英;擴(kuò)展SV模型及其在深圳股票市場(chǎng)的應(yīng)用[J];系統(tǒng)工程;2001年06期
2 余素紅,張世英;SV與GARCH模型對(duì)金融時(shí)間序列刻畫(huà)能力的比較研究[J];系統(tǒng)工程;2002年05期
3 蔣祥林;王春峰;;基于貝葉斯原理的隨機(jī)波動(dòng)率模型分析及其應(yīng)用[J];系統(tǒng)工程;2005年10期
4 王春峰,蔣祥林,李剛;基于隨機(jī)波動(dòng)性模型的中國(guó)股市波動(dòng)性估計(jì)[J];管理科學(xué)學(xué)報(bào);2003年04期
5 劉寧;對(duì)上海股票市場(chǎng)波動(dòng)性的ARCH研究[J];蘭州大學(xué)學(xué)報(bào);2004年06期
6 莫揚(yáng);股票市場(chǎng)波動(dòng)性的國(guó)際比較研究[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2004年10期
7 朱孔來(lái),倪杰;對(duì)我國(guó)股票市場(chǎng)股指波動(dòng)特性的實(shí)證分析[J];數(shù)理統(tǒng)計(jì)與管理;2005年03期
8 周宏山;冀云;;非對(duì)稱隨機(jī)波動(dòng)模型在中國(guó)股市的應(yīng)用[J];統(tǒng)計(jì)與信息論壇;2007年04期
9 王春峰,蔣祥林,吳曉霖;隨機(jī)波動(dòng)性模型的比較分析[J];系統(tǒng)工程學(xué)報(bào);2005年02期
10 鄭梅,苗佳,王升;預(yù)測(cè)滬深股市市場(chǎng)波動(dòng)性[J];系統(tǒng)工程理論與實(shí)踐;2005年11期
,本文編號(hào):2465369
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2465369.html