幾類具有違約風(fēng)險(xiǎn)的期權(quán)定價(jià)模型
[Abstract]:Weak option (vulnerable option) is an option with credit risk. It was first proposed by Johnson and Stulz (1978). Credit risk, that is, default risk, refers to the possibility that one party of the transaction will suffer losses because the other party defaults or fails to perform the contract in its entirety. Credit risk is one of the main financial risks. In the composition of financial derivatives, nearly 90% of them belong to over-the-counter (OTC). OTC financial derivatives are different from centralized clearing and clearing products in exchanges. It does not have, for example, a third party clearing house. Therefore, it is of practical significance to study the pricing of options with credit risk in OTC market. In this paper, the partial differential equation is used to study several kinds of options with default risk in Kein model. 1. The constant volatility in the kein model is improved to random volatility, the PDE method is used to model the fragile options, the pricing equation is derived, and the numerical solution is given by using the finite difference method, and the numerical results and parameters are analyzed. 2. Considering the pricing of dual-currency options with counterparty default risk, under the condition of fixed exchange rate and floating exchange rate, the PDE method is used to model the dual-currency vulnerable options, and the pricing equation is derived. Then the numerical solution is given by Monte Carlo (Monte Carlo) method, and the numerical results and parameters are analyzed. 3. Considering the pricing of rainbow barrier options with counterparty default risk, using PDE method to model fragile rainbow barrier options, the partial differential equations of eight rainbow barrier options with default risk are derived. Then the numerical method is given by the finite difference method.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F224;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡俞越;;全球金融危機(jī)下中國(guó)期貨市場(chǎng)的創(chuàng)新之路[J];北京工商大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2009年02期
2 付長(zhǎng)青,張世斌;具有違約風(fēng)險(xiǎn)的美式買權(quán)的定價(jià)問(wèn)題[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2002年05期
3 黃國(guó)安;鄧國(guó)和;;國(guó)內(nèi)外利率為隨機(jī)的雙幣種重置型期權(quán)定價(jià)[J];大學(xué)數(shù)學(xué);2011年02期
4 周香英;潘堅(jiān);;隨機(jī)利率下兩類奇異期權(quán)定價(jià)的偏微分方程方法[J];贛南師范學(xué)院學(xué)報(bào);2010年06期
5 李亞瓊;黃立宏;;兩種匯率制度的雙幣種期權(quán)定價(jià)模型及其解[J];經(jīng)濟(jì)數(shù)學(xué);2009年04期
6 周媛;李亞瓊;;使用雙幣種期權(quán)的風(fēng)險(xiǎn)管理[J];經(jīng)濟(jì)數(shù)學(xué);2010年04期
7 劉文娟;孫寧華;;百年期權(quán)定價(jià)[J];科技情報(bào)開(kāi)發(fā)與經(jīng)濟(jì);2006年04期
8 周密;;跳躍擴(kuò)散型雙幣種期權(quán)的定價(jià)[J];科學(xué)技術(shù)與工程;2010年34期
9 劉蕊蕊;徐云;;考慮信用風(fēng)險(xiǎn)的亞式期權(quán)定價(jià)[J];數(shù)學(xué)理論與應(yīng)用;2010年03期
10 郭培棟,張寄洲;隨機(jī)利率下雙幣種期權(quán)的定價(jià)[J];上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年06期
相關(guān)碩士學(xué)位論文 前3條
1 陳俊霞;歐式期權(quán)定價(jià)的兩個(gè)問(wèn)題探討[D];華中科技大學(xué);2006年
2 王博;含信用風(fēng)險(xiǎn)的障礙期權(quán)的定價(jià)[D];華中科技大學(xué);2007年
3 柳士峰;具有交易費(fèi)用的雙幣種期權(quán)定價(jià)[D];湖南大學(xué);2010年
,本文編號(hào):2331825
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2331825.html