基于高頻數據的量價動態(tài)關系研究
[Abstract]:In recent years, with the continuous development of computing technology and electronic trading system, as well as the decline of transaction costs, data acquisition and processing methods in the financial market have been continuously improved, and the acquisition of high-frequency data is becoming more and more convenient. Compared with the low frequency data, the high frequency data has more abundant market information, so it has become one of the research hotspots. With further research and attention, the value of volume-price relationship in the financial world has been greatly improved. There is both static and dynamic relationship between the volume and price changes of stock market. The purpose of this paper is to make use of the high frequency data of stock market over the years to probe into the dynamic relationship between volume and price of stock market. Firstly, this paper introduces the basic concepts and characteristics of high-frequency data in financial markets, and introduces the "realized" fluctuations. Secondly, the four theoretical models of the relationship between volume and price are described in detail. This is of great significance to the empirical analysis using high-frequency data. Although the relationship between trading volume and volatility has always been a focus in the financial field, previous scholars have focused on low-frequency data. Therefore, using high-frequency data to empirically study the relationship between trading volume and volatility has certain significance. On this basis, the GARCH model is constructed, and the ARMA-GARCH prediction model describing the relationship between quantity and price is constructed by combining the mean equation of the ARMA structure. The parameters are estimated and tested based on DCC-GARCH model, and the relationship between volume and price of stock market is analyzed by using high frequency data. The results show that the dynamic correlation between stock price and trading volume is not constant, and it is persistent and time-varying, which is accompanied by strong volatility of market information flow.
【學位授予單位】:天津大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:F830.91;F224
【參考文獻】
相關期刊論文 前10條
1 眭紀剛;;市場的微觀結構和交易機制:關于中間商理論的研究評述[J];財經科學;2008年10期
2 唐振鵬;;金融高頻數據和超高頻數據的研究現狀及展望[J];福州大學學報(哲學社會科學版);2008年04期
3 袁源;;中國證券市場波動性的實證分析[J];系統(tǒng)工程;2008年06期
4 耿克紅;張世英;;SCD模型與ACD模型比較研究[J];管理學報;2008年01期
5 郭梁;周煒星;;基于高頻數據的中國股市量價關系研究[J];管理學報;2010年08期
6 余德建;吳應宇;周偉;孟筍;;金融超高頻數據研究新進展[J];華南理工大學學報(社會科學版);2011年01期
7 何杰;證券市場微觀結構理論[J];經濟導刊;2000年05期
8 苗曉宇;;(超)高頻數據視角下金融風險度量研究進展[J];經濟論壇;2010年08期
9 劉建華;;基于高頻數據的中國股市量價日內特征分析[J];經濟師;2007年10期
10 羅芳,歐陽紅兵;證券市場微觀結構理論及其對中國證券市場的啟示[J];經濟問題探索;2000年10期
相關博士學位論文 前3條
1 于亦文;中國證券市場微觀結構若干問題研究[D];南京航空航天大學;2005年
2 厲斌;非對稱信息條件下中國證券市場價格行為研究[D];天津大學;2005年
3 李勝歌;基于高頻數據的金融波動率研究[D];天津大學;2008年
相關碩士學位論文 前8條
1 鄭志凌;我國滬深股市價量關系的實證研究[D];西南財經大學;2005年
2 王志剛;我國股票市場交易機制及價格行為實證研究[D];電子科技大學;2005年
3 補馮林;基于超高頻數據分析的股票流動性度量實證研究[D];重慶大學;2005年
4 李曉華;不同交易機制下證券市場價格形成過程比較分析[D];武漢大學;2005年
5 姜雪;我國股票市場量價關系的經濟分析[D];吉林大學;2008年
6 翟昌立;基于高頻數據的中國證券市場特征研究[D];天津大學;2007年
7 劉曉;中國股市波動性與交易量相關關系的實證研究[D];青島大學;2008年
8 黃文靜;交易時間間隔與波動率的研究[D];廈門大學;2008年
,本文編號:2199080
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2199080.html