基于高頻數(shù)據(jù)的量?jī)r(jià)動(dòng)態(tài)關(guān)系研究
[Abstract]:In recent years, with the continuous development of computing technology and electronic trading system, as well as the decline of transaction costs, data acquisition and processing methods in the financial market have been continuously improved, and the acquisition of high-frequency data is becoming more and more convenient. Compared with the low frequency data, the high frequency data has more abundant market information, so it has become one of the research hotspots. With further research and attention, the value of volume-price relationship in the financial world has been greatly improved. There is both static and dynamic relationship between the volume and price changes of stock market. The purpose of this paper is to make use of the high frequency data of stock market over the years to probe into the dynamic relationship between volume and price of stock market. Firstly, this paper introduces the basic concepts and characteristics of high-frequency data in financial markets, and introduces the "realized" fluctuations. Secondly, the four theoretical models of the relationship between volume and price are described in detail. This is of great significance to the empirical analysis using high-frequency data. Although the relationship between trading volume and volatility has always been a focus in the financial field, previous scholars have focused on low-frequency data. Therefore, using high-frequency data to empirically study the relationship between trading volume and volatility has certain significance. On this basis, the GARCH model is constructed, and the ARMA-GARCH prediction model describing the relationship between quantity and price is constructed by combining the mean equation of the ARMA structure. The parameters are estimated and tested based on DCC-GARCH model, and the relationship between volume and price of stock market is analyzed by using high frequency data. The results show that the dynamic correlation between stock price and trading volume is not constant, and it is persistent and time-varying, which is accompanied by strong volatility of market information flow.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F830.91;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 眭紀(jì)剛;;市場(chǎng)的微觀結(jié)構(gòu)和交易機(jī)制:關(guān)于中間商理論的研究評(píng)述[J];財(cái)經(jīng)科學(xué);2008年10期
2 唐振鵬;;金融高頻數(shù)據(jù)和超高頻數(shù)據(jù)的研究現(xiàn)狀及展望[J];福州大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2008年04期
3 袁源;;中國(guó)證券市場(chǎng)波動(dòng)性的實(shí)證分析[J];系統(tǒng)工程;2008年06期
4 耿克紅;張世英;;SCD模型與ACD模型比較研究[J];管理學(xué)報(bào);2008年01期
5 郭梁;周煒星;;基于高頻數(shù)據(jù)的中國(guó)股市量?jī)r(jià)關(guān)系研究[J];管理學(xué)報(bào);2010年08期
6 余德建;吳應(yīng)宇;周偉;孟筍;;金融超高頻數(shù)據(jù)研究新進(jìn)展[J];華南理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2011年01期
7 何杰;證券市場(chǎng)微觀結(jié)構(gòu)理論[J];經(jīng)濟(jì)導(dǎo)刊;2000年05期
8 苗曉宇;;(超)高頻數(shù)據(jù)視角下金融風(fēng)險(xiǎn)度量研究進(jìn)展[J];經(jīng)濟(jì)論壇;2010年08期
9 劉建華;;基于高頻數(shù)據(jù)的中國(guó)股市量?jī)r(jià)日內(nèi)特征分析[J];經(jīng)濟(jì)師;2007年10期
10 羅芳,歐陽紅兵;證券市場(chǎng)微觀結(jié)構(gòu)理論及其對(duì)中國(guó)證券市場(chǎng)的啟示[J];經(jīng)濟(jì)問題探索;2000年10期
相關(guān)博士學(xué)位論文 前3條
1 于亦文;中國(guó)證券市場(chǎng)微觀結(jié)構(gòu)若干問題研究[D];南京航空航天大學(xué);2005年
2 厲斌;非對(duì)稱信息條件下中國(guó)證券市場(chǎng)價(jià)格行為研究[D];天津大學(xué);2005年
3 李勝歌;基于高頻數(shù)據(jù)的金融波動(dòng)率研究[D];天津大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 鄭志凌;我國(guó)滬深股市價(jià)量關(guān)系的實(shí)證研究[D];西南財(cái)經(jīng)大學(xué);2005年
2 王志剛;我國(guó)股票市場(chǎng)交易機(jī)制及價(jià)格行為實(shí)證研究[D];電子科技大學(xué);2005年
3 補(bǔ)馮林;基于超高頻數(shù)據(jù)分析的股票流動(dòng)性度量實(shí)證研究[D];重慶大學(xué);2005年
4 李曉華;不同交易機(jī)制下證券市場(chǎng)價(jià)格形成過程比較分析[D];武漢大學(xué);2005年
5 姜雪;我國(guó)股票市場(chǎng)量?jī)r(jià)關(guān)系的經(jīng)濟(jì)分析[D];吉林大學(xué);2008年
6 翟昌立;基于高頻數(shù)據(jù)的中國(guó)證券市場(chǎng)特征研究[D];天津大學(xué);2007年
7 劉曉;中國(guó)股市波動(dòng)性與交易量相關(guān)關(guān)系的實(shí)證研究[D];青島大學(xué);2008年
8 黃文靜;交易時(shí)間間隔與波動(dòng)率的研究[D];廈門大學(xué);2008年
,本文編號(hào):2199080
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2199080.html