基于Ornstein-Uhlehbeck過程的亞式期權(quán)定價
[Abstract]:In recent years, Asian options have become a new hot spot in the financial derivatives market. Asian options have lower option fees and hedging costs than standard options. In addition, Asian options are priced on average. It can reduce the chance of the underlying asset being manipulated artificially. Based on these two advantages, it is favored by some companies. Therefore, the study of Asian option pricing meets the needs of the market. This paper uses the actuarial pricing method to study the Asian option pricing which follows the generalized exponential Ornstein-Uhlenbeck process and the interest rate satisfies the Hull-White model. The first chapter introduces the basic knowledge of options, including the emergence and development of options, option market and option pricing theory, and introduces the main work of this paper. The Black-Sholes model of Ito Lemma and the numerical calculation methods of three kinds of commonly used options are used. The MATLAB numerical analysis of stock is carried out with Hurst exponent, and a Hurst exponent timing strategy is designed. An example is given to show that the strategy has a very good effect. And the Hurst index timing strategy is suitable for long-term investors. Chapter three introduces the current situation of Asian option pricing. Chapter 4 introduces the basic Ornstein-Uhlenbeck process and the generalized exponential Ornstein-Uhlenbeck process. The generalized exponential Ornstein-Uhlenbeck process has obvious regression: if the stock price deviates, the model has a regression trend. This paper uses this model to describe the stock process. Chapter 5 uses the actuarial pricing method to follow the generalized exponential Ornstein-Uhlenbeck process for the stock price. The paper studies the pricing of Asian option with Hull-White model, and explains the reason of choosing actuarial pricing method: it alleviates the contradiction between excessive pricing of Black-Sholes option and too low statistical pricing. Finally, it has some advantages. Without taking into account the dividend payment, the pricing formulas of call and put options for arithmetic average Asian options are obtained. The pricing formulas of the geometric average Asian option are put and call options. Chapter 6 summarizes the work of this paper and puts forward the prospect.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:F224;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曲軍恒;霍穎瑜;;浮動敲定價格的幾何平均亞式期權(quán)的定價模型[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(自然科學(xué)版);2006年02期
2 李紅;鄧國和;楊向群;;跳躍擴(kuò)散模型外匯重置期權(quán)定價[J];福州大學(xué)學(xué)報(自然科學(xué)版);2006年01期
3 劉堅;鄧國和;楊向群;;利率和股票價格遵循O-U過程的再裝期權(quán)定價[J];工程數(shù)學(xué)學(xué)報;2007年02期
4 鄭小迎,陳金賢;關(guān)于新型期權(quán)及其定價模型的研究[J];管理工程學(xué)報;2000年03期
5 陳超,鄒捷中,劉國買;股票價格服從跳—擴(kuò)散過程的期權(quán)定價模型[J];管理工程學(xué)報;2001年02期
6 馬奕虹;鄧國和;;股票價格服從跳擴(kuò)散過程的雙幣種期權(quán)定價[J];廣西師范大學(xué)學(xué)報(自然科學(xué)版);2007年03期
7 何榮國;鄧國和;;一類二元跳擴(kuò)散模型的歐式期權(quán)定價[J];廣西師范大學(xué)學(xué)報(自然科學(xué)版);2008年02期
8 鄧國和;楊向群;;有跳風(fēng)險的隨機利率與動態(tài)資產(chǎn)分配[J];高校應(yīng)用數(shù)學(xué)學(xué)報A輯(中文版);2006年03期
9 趙攀;袁國軍;施明華;;O-U過程下不確定執(zhí)行價格的亞式期權(quán)定價[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2010年11期
10 曲軍恒,沈堯天,姚仰新;有交易費的幾何平均亞式期權(quán)的定價公式[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2004年05期
相關(guān)碩士學(xué)位論文 前5條
1 王楊;障礙期權(quán)定價問題的若干研究[D];上海師范大學(xué);2005年
2 劉堅;廣義Ornstein-Uhlenbeck過程的歐式未定權(quán)益定價[D];湖南師范大學(xué);2006年
3 張世中;關(guān)于亞式期權(quán)定價的若干問題的研究[D];華中科技大學(xué);2006年
4 韓立杰;亞式期權(quán)定價研究[D];北方工業(yè)大學(xué);2008年
5 李小紅;幾何平均亞式期權(quán)的定價研究[D];華中師范大學(xué);2008年
,本文編號:2139396
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2139396.html