基于極值分布VaR模型的中國(guó)股指期貨風(fēng)險(xiǎn)評(píng)估
本文選題:VaR模型 + 股指期貨 ; 參考:《上海師范大學(xué)》2013年碩士論文
【摘要】:近二十多年來(lái),世界經(jīng)濟(jì)的快速發(fā)展,全球一體化特別是經(jīng)濟(jì)全球一體化的趨勢(shì)越來(lái)越明顯,伴隨著世界經(jīng)濟(jì)的快速發(fā)展,特別是以布雷頓森林體系的崩潰為標(biāo)志,全球金融市場(chǎng)的穩(wěn)定性,變得越來(lái)越脆弱,金融市場(chǎng)風(fēng)險(xiǎn)一天都不曾消失,如同“達(dá)摩克利斯之劍”一樣懸在上空。金融風(fēng)險(xiǎn)將影響作為一個(gè)整體的世界經(jīng)濟(jì)格局,而不是一個(gè)單一的金融機(jī)構(gòu),它的影響,就可能會(huì)影響世界經(jīng)濟(jì)的穩(wěn)定發(fā)展。金融風(fēng)險(xiǎn)度量已成為一個(gè)非常重要的課題,研究它具有十分重要的理論和現(xiàn)實(shí)意義。風(fēng)險(xiǎn)測(cè)度理論在風(fēng)險(xiǎn)管理實(shí)踐過(guò)程中不斷發(fā)展,VaR風(fēng)險(xiǎn)度量方法使金融風(fēng)險(xiǎn)的定量研究得到進(jìn)一步的發(fā)展。 我國(guó)金融市場(chǎng)目前尚不成熟,套期保值工具品種還較為缺乏,伴隨著金融市場(chǎng)的快速發(fā)展,其所承擔(dān)的風(fēng)險(xiǎn)也越來(lái)越大。股指期貨作為基礎(chǔ)性風(fēng)險(xiǎn)管理工具,具有價(jià)格發(fā)現(xiàn)、套期保值的功能,滬深300股指期貨合約正式上市,標(biāo)志著我國(guó)股指期貨的誕生,它的推出填補(bǔ)了我國(guó)股市缺乏針對(duì)系統(tǒng)性風(fēng)險(xiǎn)的管理手段這一空白,將改變股票市場(chǎng)缺乏規(guī)避系統(tǒng)性風(fēng)險(xiǎn)工具的現(xiàn)狀,本文用極值分布VaR模型對(duì)股指期貨的數(shù)據(jù)進(jìn)行了實(shí)證研究,分析VaR值對(duì)股指期貨風(fēng)險(xiǎn)評(píng)價(jià)研究具有重要意義。 VaR值的準(zhǔn)確度量不僅與資產(chǎn)收益率的分布有關(guān),還與資產(chǎn)收益率的波動(dòng)性有關(guān),,準(zhǔn)確估計(jì)資產(chǎn)的波動(dòng)率對(duì)于VaR的度量顯得十分必要。本文對(duì)VaR模型進(jìn)行了深入研究,包括極值波動(dòng)下的VaR風(fēng)險(xiǎn)度量及其高頻數(shù)據(jù)波動(dòng)的VaR風(fēng)險(xiǎn)估計(jì)。介紹了極值分布中閾值和特征參數(shù)的估算方法,同時(shí)用兩種方法,即分為廣義極值模型和廣義Pareto模型,對(duì)風(fēng)險(xiǎn)價(jià)值VaR作了實(shí)證研究,由于正態(tài)分布與金融時(shí)間序列的分布不符,其收益率具有“尖峰厚尾”的特性,從分布來(lái)看,五分鐘損失序列的分布顯然偏離正態(tài)分布,它表現(xiàn)出一個(gè)粗大的尾巴,帶有負(fù)偏態(tài)和相對(duì)較大的峰度,并呈現(xiàn)波動(dòng)集聚性。其次,廣義帕累托分布是最有用和最實(shí)用的極值理論模型的研究成果,在分析金融市場(chǎng)風(fēng)險(xiǎn)時(shí),由于樣本數(shù)據(jù)具有厚尾分布,厚尾分布具有顯著的優(yōu)勢(shì)。實(shí)證研究結(jié)果表明,極值理論可以準(zhǔn)確度量尾部分布的極端事件的風(fēng)險(xiǎn)價(jià)值。
[Abstract]:In the past twenty years, with the rapid development of the world economy, the trend of global integration, especially the global economic integration, has become more and more obvious, accompanied by the rapid development of the world economy, especially marked by the collapse of the Bretton Woods system. The stability of global financial markets has become increasingly fragile, and financial market risks have not disappeared for a day, hanging like the sword of Damocles. Financial risk will affect the world economic pattern as a whole, not a single financial institution. Its influence may affect the stable development of the world economy. The measurement of financial risk has become a very important subject, and it has very important theoretical and practical significance to study it. In the process of risk management practice, the theory of risk measurement develops VaR risk measurement method, which makes the quantitative study of financial risk further developed. The financial market of our country is not mature at present, the variety of hedging tools is still lack, with the rapid development of the financial market, the risk it bears is becoming more and more big. As a basic risk management tool, stock index futures have the functions of price discovery and hedging. The Shanghai and Shenzhen 300 stock index futures contracts are officially listed, which marks the birth of stock index futures in China. Its introduction fills the blank of the lack of systematic risk management means in China's stock market, and will change the present situation of stock market lacking tools to avoid systemic risk. This paper makes an empirical study on the data of stock index futures by using the VaR model of extreme value distribution, and analyzes the importance of VaR value to the risk evaluation of stock index futures. The accuracy of VaR value is not only related to the distribution of return rate of assets, but also to the risk evaluation of stock index futures. It is also related to the volatility of the return on assets. It is necessary to estimate the volatility of assets accurately for the measurement of VaR. In this paper, the VaR model is deeply studied, including the VaR risk measurement under extreme fluctuation and the VaR risk estimation of high frequency data fluctuation. This paper introduces the estimation methods of threshold and characteristic parameters in the extreme value distribution, and uses two methods, namely, the generalized extreme value model and the generalized Pareto model, to make an empirical study on VaR of risk value, because the normal distribution does not agree with the distribution of financial time series. From the distribution, the distribution of the five-minute loss series deviates from the normal distribution obviously. It shows a coarse tail with negative skewness and relatively large kurtosis, and shows a fluctuating agglomeration. Secondly, the generalized Pareto distribution is the most useful and practical research result of extreme value theory model. In the analysis of financial market risk, because of the thick tail distribution in the sample data, the thick tail distribution has a significant advantage. The empirical results show that the extreme value theory can accurately measure the risk value of extreme events with tail distribution.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:F832.51;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉曉星;;基于CVaR的投資組合優(yōu)化模型研究[J];商業(yè)研究;2006年14期
2 王慧敏,劉國(guó)光;基于極值理論的滬深股市VaR和CVaR分析[J];財(cái)貿(mào)研究;2005年02期
3 陳平平;;VaR在商業(yè)銀行風(fēng)險(xiǎn)管理中的應(yīng)用[J];東方企業(yè)文化;2010年15期
4 周竟東;謝赤;歐輝生;趙亦軍;;權(quán)證收益率波動(dòng)的度量:基于GARCH和SV模型的比較[J];系統(tǒng)工程;2010年04期
5 孫米強(qiáng),楊忠直,余素紅,宋軍;基于隨機(jī)波動(dòng)模型的VaR的計(jì)算[J];管理工程學(xué)報(bào);2004年01期
6 劉慶富;仲偉俊;華仁海;劉曉星;;EGARCH-GED模型在計(jì)量中國(guó)期貨市場(chǎng)風(fēng)險(xiǎn)價(jià)值中的應(yīng)用[J];管理工程學(xué)報(bào);2007年01期
7 張?zhí)諅?;金融期貨簡(jiǎn)介[J];財(cái)務(wù)與會(huì)計(jì);2006年22期
8 劉燕,周正祥;金融期貨的市場(chǎng)經(jīng)濟(jì)功能和價(jià)格影響因素[J];湖南經(jīng)濟(jì)管理干部學(xué)院學(xué)報(bào);2005年01期
9 黃德龍;楊曉光;;中國(guó)證券市場(chǎng)股指收益分布的實(shí)證分析[J];管理科學(xué)學(xué)報(bào);2008年01期
10 劉宇飛;VaR模型及其在金融監(jiān)管中的應(yīng)用[J];經(jīng)濟(jì)科學(xué);1999年01期
本文編號(hào):2113107
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/2113107.html