基于KMV模型的中小企業(yè)板上市公司財務預警研究
本文關(guān)鍵詞:基于KMV模型的中小企業(yè)板上市公司財務預警研究 出處:《青島理工大學》2013年碩士論文 論文類型:學位論文
更多相關(guān)文章: 財務預警 KMV模型 違約距離 主成分分析 Logistic回歸
【摘要】:我國已步入后金融危機時代,,受到2010年歐債危機的影響后,以出口為主的很多中小企業(yè)紛紛倒閉,出口受到阻礙,銀行的信貸違約案例增加,對金融業(yè)造成沖擊。中小板上市公司成立的時間短,規(guī)模較小,導致業(yè)績評價困難,更易出現(xiàn)如操縱市場、內(nèi)幕交易等行為,爆發(fā)財務危機的可能性也更大。因此需要建立積極有效的財務預警模型系統(tǒng),用以合理避免企業(yè)的財務危機,保護投資者的權(quán)益,維持資本市場的穩(wěn)定,尤其是能夠解決目前中小板上市公司普遍存在的銀行不良資產(chǎn)率高的問題。 目前我國對財務預警模型領(lǐng)域的研究依賴傳統(tǒng)的財務指標,因為我國的違約數(shù)據(jù)庫系統(tǒng)尚未建立,部分的國內(nèi)學者試圖研究將KMV模型引入至預警模型,但是這方面的研究大多限于在我國KMV模型能否有效適用方面,實際上信用風險度量層面的最新研究成果尚未真正與我國企業(yè)的財務預警模型相結(jié)合。本文在前人研究的基礎(chǔ)上,將傳統(tǒng)的財務指標預警模型與信用風險度量模型相結(jié)合,引入KMV的違約距離與預期違約率指標,以期提高財務預警模型的預測精度。 本文在闡述Logistic邏輯回歸模型及KMV模型的基礎(chǔ)上,把KMV模型中的違約距離(DD)引入到Logistic模型,建立一套新的財務預警模型,以時間因素為縱向,比較加入違約距離前后兩種模型在預測的準確性的區(qū)別,考察違約距離對財務預警模型預測和解釋能力的影響,再分析違約距離變量對模型2的影響。 首先根據(jù)我國資本市場的實際情況對KMV模型的參數(shù)修正:一是股東權(quán)益市場價值,我國存在股權(quán)分置現(xiàn)象,除了流通股外還存在非流通股,非流通股大多處于股權(quán)分置改革的限售期。非流通股的定價依據(jù)凈資產(chǎn)定價法;二是違約點DP,當公司的資產(chǎn)價值低于某一臨界值時,對債權(quán)人和公司股東會出現(xiàn)違約,與這一臨界值相應的資產(chǎn)價值稱為違約點DP。 其次對KMV模型的輸出結(jié)果違約距離及依據(jù)違約距離計算得出的預期違約率做相關(guān)性分析和顯著性檢驗。經(jīng)過相關(guān)性分析,DD和EDF呈負相關(guān)關(guān)系,而顯著性檢驗說明DD和EDF在0.05的顯著性水平下均存在顯著性差異。 再次對22個基礎(chǔ)指標進行篩選。本文將通過正態(tài)性檢驗及顯著性檢驗篩選出能夠?qū)δP陀休^好代表的自變量,再通過因子分析剔除具有多重共線性的自變量,選出更具有代表性的變量。 最后構(gòu)建回歸模型;谏鲜龅难芯,利用Logistic回歸模型針對2010年和2011年分別構(gòu)建基于財務指標的預警模型和引入違約距離的預警模型,通過對兩種判別模型在橫向和縱向的對比分析,得出結(jié)論:引入KMV模型可以提高財務預警模型的解釋和判別能力,提高預測的準確性;經(jīng)檢驗新的預警模型對中小企業(yè)板上市公司危機預警效果良好。
[Abstract]:Our country has entered the post-financial crisis era, by the European debt crisis in 2010, many small and medium-sized enterprises mainly export have closed down, export has been hindered, the bank credit default cases increased. The small and medium board listed companies have short time and small scale, which lead to the difficulty of performance evaluation, such as market manipulation, insider trading and so on. Therefore, it is necessary to establish an active and effective financial early-warning model system in order to reasonably avoid the financial crisis of enterprises, protect the rights and interests of investors, and maintain the stability of the capital market. In particular, it can solve the problem of high non-performing assets in banks. At present, the research on financial early-warning model in China depends on the traditional financial indicators, because the default database system has not been established in China. Some domestic scholars try to introduce KMV model into the early-warning model. However, most of the research in this area is limited to whether the KMV model can be effectively applied in our country. In fact, the latest research results in the level of credit risk measurement have not been really combined with the financial early-warning model of Chinese enterprises. Combining the traditional financial index early warning model with the credit risk measurement model, this paper introduces the default distance and the expected default rate index of KMV in order to improve the prediction accuracy of the financial early warning model. Based on the description of Logistic logical regression model and KMV model, this paper introduces the default distance (DDD) of KMV model into Logistic model. A new financial early warning model is established to compare the prediction accuracy of the two models before and after adding the default distance, taking the time factor as the vertical. The influence of default distance on forecasting and explaining ability of financial early warning model is investigated, and the influence of default distance variable on model 2 is analyzed. First, according to the actual situation of the capital market in China, the parameters of the KMV model are revised: first, the market value of shareholders' rights and interests, there is the phenomenon of split share structure in China, in addition to circulating shares, there are also non-tradable shares. Most of the non-tradable shares are in the restricted period of the split share structure reform. The pricing of non-tradable shares is based on the net assets pricing method. The other is the default point DP.When the company's asset value is below a certain critical value, it will default on creditors and shareholders. The corresponding asset value corresponding to this critical value is called default point DP. Secondly, the correlation analysis and significance test of the default distance between the output of KMV model and the expected default rate calculated according to the default distance are made. Through the correlation analysis, DD and EDF are negatively correlated. The significance test showed that there were significant differences between DD and EDF at the significant level of 0. 05. Again, 22 basic indexes were screened. In this paper, the independent variables which can represent the model were screened by normal test and significance test. Then factor analysis is used to eliminate the independent variables with multiple collinearity, and the more representative variables are selected. Finally, the regression model is constructed. Based on the above research. The Logistic regression model is used to build the early warning model based on financial indicators and the early warning model based on default distance for 2010 and 2011 respectively. Through the comparative analysis of the two discriminant models in the horizontal and vertical, it is concluded that the introduction of KMV model can improve the interpretation and discriminant ability of the financial early-warning model and improve the accuracy of prediction; The new warning model is proved to be effective for the crisis warning of SMEs listed companies.
【學位授予單位】:青島理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F275;F832.51
【參考文獻】
相關(guān)期刊論文 前10條
1 袁康來;郭平波;;基于現(xiàn)金流量的企業(yè)財務預警方法[J];商業(yè)研究;2009年07期
2 喬卓,喬椺椺;上市公司財務困境預測模型實證研究[J];財經(jīng)科學;2002年S2期
3 周娟;王麗娟;;基于EVA的財務危機預警模型應用[J];財會月刊;2007年08期
4 趙愛玲;企業(yè)財務危機的識別與分析[J];財經(jīng)理論與實踐;2000年06期
5 胡躍紅;黃婧;;我國化工企業(yè)的財務預警模型構(gòu)建及其檢驗——基于Logistic回歸方法[J];長沙理工大學學報(社會科學版);2011年06期
6 姚靠華;蔣艷輝;;基于決策樹的財務預警[J];系統(tǒng)工程;2005年10期
7 羅怡;廖運崗;;企業(yè)財務預警實證分析——以我國9家上市飼料公司為例[J];財經(jīng)科學;2012年09期
8 劉遵雄;鄭淑娟;秦賓;張恒;;L1正則化Logistic回歸在財務預警中的應用[J];經(jīng)濟數(shù)學;2012年02期
9 安筱鵬;電子信息產(chǎn)業(yè)發(fā)展模式的探討[J];現(xiàn)代經(jīng)濟探討;2005年07期
10 吳世農(nóng),盧賢義;我國上市公司財務困境的預測模型研究[J];經(jīng)濟研究;2001年06期
本文編號:1433417
本文鏈接:http://sikaile.net/guanlilunwen/zhqtouz/1433417.html