超飽和試驗設計中的參數(shù)估計問題
發(fā)布時間:2018-07-07 15:55
本文選題:超飽和設計 + 可比估計; 參考:《數(shù)理統(tǒng)計與管理》1997年05期
【摘要】:超飽和試驗設計是一種因子個數(shù)大于試驗次數(shù)的試驗設計;它是工業(yè)統(tǒng)計中的一個新的研究課題,在工業(yè)質量控制中有重要的應用。在超飽和設計中,因子效應參數(shù)的無偏估計一般不存在,一個因子效應的估計會受到其它因子效應的影響,這種影響是設計本身帶來的,稱之為交互影響。本文討論兩種參數(shù)估計:最小方差可比估計與最小交互影響可比估計。模擬計算的結果顯示,在正確地搜尋活動因子的能力方面,,最小交互影響可比估計在與實際情況相接近的模擬條件下強于最小方差可比估計。
[Abstract]:The design of supersaturated test is a kind of experimental design whose number of factors is greater than the number of tests, and it is a new research subject in industrial statistics, which has important application in industrial quality control. In supersaturated design, the unbiased estimation of factor effect parameters generally does not exist, and the estimation of one factor effect is affected by other factor effects, which is caused by the design itself, which is called interaction effect. In this paper, we discuss two kinds of parameter estimation: minimum variance comparable estimation and minimum interaction comparable estimation. The simulation results show that the minimum interaction comparable estimation is stronger than the minimum variance comparable estimate under the simulation condition which is close to the actual situation in terms of the ability to search correctly for the activity factors.
【作者單位】: 清華大學應用數(shù)學系
【分類號】:C931.1
本文編號:2105465
本文鏈接:http://sikaile.net/guanlilunwen/yunyingzuzhiguanlilunwen/2105465.html
最近更新
教材專著