PLS1回歸對多變量信息的綜合與篩選作用分析
發(fā)布時間:2018-04-17 02:31
本文選題:PLS回歸方法 + 變量多重相關(guān)性 ; 參考:《數(shù)理統(tǒng)計與管理》1998年04期
【摘要】:王惠文,PLS1回歸對多變量信息的綜合與篩選作用分析,數(shù)理統(tǒng)計與管理,1998,17(4),46~49。本文討論了PLS1回歸對多變量系統(tǒng)中的信息進行綜合與篩選的工作策略。通過例證分析指出,PLS1回歸方法可以有效地提取對系統(tǒng)解釋性最強的綜合變量,排除重疊信息或無解釋意義的信息干擾,,從而較好地克服變量多重相關(guān)性在系統(tǒng)建模中的不良作用
[Abstract]:Analysis of the effect of Wang Huiwen's PLS1 regression on the Synthesis and screening of Multivariate Information, Mathematical Statistics and ManagementIn this paper, the strategy of synthesizing and screening information in multivariable systems by PLS1 regression is discussed.Through the analysis of examples, it is pointed out that the method of PLS1 regression can effectively extract the most explanatory comprehensive variables and eliminate the interference of overlapping information or non-explanatory information, so as to overcome the adverse effect of multiple correlation of variables in system modeling.
【基金】:自然科學基金
【分類號】:C931.1
本文編號:1761686
本文鏈接:http://sikaile.net/guanlilunwen/yunyingzuzhiguanlilunwen/1761686.html
最近更新
教材專著