改進Apriori算法及其在信息學奧賽學員選拔中的應用
發(fā)布時間:2018-02-16 07:02
本文關(guān)鍵詞: 數(shù)據(jù)挖掘 關(guān)聯(lián)規(guī)則 Apriori算法 出處:《華僑大學》2015年碩士論文 論文類型:學位論文
【摘要】:數(shù)據(jù)挖掘是人工智能研究領(lǐng)域的重點,關(guān)聯(lián)規(guī)則則是其研究的主要方向。近年來關(guān)聯(lián)規(guī)則已被廣泛應用在市場營銷、科研、醫(yī)療、網(wǎng)絡入侵檢測、教育等領(lǐng)域,并取得了一定的成果。隨著信息學奧賽的深入開展,信息學奧賽在學校教育中越來越受到重視。但其只是適合少部分優(yōu)秀學生的精英教育。由于信息學不是高考學科,在開展過程中遇到諸多挑戰(zhàn)。選拔好的苗子對競賽成功能取到事半功倍的效果,因此將數(shù)據(jù)挖掘技術(shù)運用于信息學奧賽學員的選拔中,利用挖掘結(jié)果可促進奧賽良性發(fā)展。本文以面向信息學奧賽學員的調(diào)查問卷為數(shù)據(jù)樣本,將改進的Apriori算法應用于信息學奧賽學員的選拔中。主要內(nèi)容包括:1.論述Apriori算法的主要思想、執(zhí)行過程、遇到的瓶頸和已有改進方法。2.提出一種改進算法Tire-Apriori,介紹了改進算法基于字典樹及事務投影的基本思想、理論依據(jù)以及結(jié)合實例詳細分析了算法的執(zhí)行步驟;運用c++語言編寫算法程序,用實驗驗證Tire-Apriori算法的優(yōu)勢。3.Tire-Apriori應用于選拔信息學奧賽學員。以本文設計的調(diào)查問卷為數(shù)據(jù)源,分析了數(shù)據(jù)的采集及預處理過程;采用Tire-Apriori,分兩種情況對數(shù)據(jù)進行挖掘:第一,挖掘“獲獎與學生特征的關(guān)系”,為信息學奧賽教練挑選學員提供了選拔的標準;第二,挖掘“信息學奧賽與素質(zhì)教育的關(guān)系”,吸引更多有能力參加競賽的學員自愿參與到競賽團隊中。
[Abstract]:In recent years, data mining has been widely used in marketing, scientific research, medical treatment, network intrusion detection, education and other fields. With the further development of the Olympiad of Informatics, it has received more and more attention in school education. But it is only an elite education suitable for a small number of excellent students. Since informatics is not a subject of the college entrance examination, In the process of development, there are many challenges. The selection of good seedlings can achieve twice the result with half the effort, so the data mining technology is applied to the selection of the students of the Informatics Olympiad. The results of mining can promote the healthy development of Osei. This paper takes the questionnaire for the participants in Informatics as the data sample. The improved Apriori algorithm is applied to the selection of the students of the Informatics Olympiad. The main contents include: 1.Discusses the main idea and execution process of the Apriori algorithm, 2. An improved algorithm Tire-Apriori. the basic idea of the improved algorithm based on dictionary tree and transaction projection is introduced. The theoretical basis and the implementation steps of the algorithm are analyzed in detail with an example. C language is used to program the algorithm, and the advantage of Tire-Apriori algorithm is verified by experiments. 3. Tire-Apriori is used to select the students of the Informatics Olympiad. Taking the questionnaire designed in this paper as the data source, the process of data acquisition and preprocessing is analyzed. This paper uses Tire-Apriorii to mine the data in two situations: first, mining the relationship between the award and the students' characteristics, which provides the criteria for the selection of the coach of the Olympiad of Informatics. Explore the relationship between the Olympiad of Informatics and quality Education and attract more students who have the ability to participate in the competition to participate in the competition team voluntarily.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TP311.13
【參考文獻】
相關(guān)期刊論文 前2條
1 李婷;傅鋼善;;國內(nèi)外教育數(shù)據(jù)挖掘研究現(xiàn)狀及趨勢分析[J];現(xiàn)代教育技術(shù);2010年10期
2 劉學才;;數(shù)學建模中的知識發(fā)現(xiàn)與數(shù)據(jù)挖掘[J];中國科技信息;2006年21期
相關(guān)碩士學位論文 前1條
1 徐寧;高中數(shù)學學習過程中的性別差異性研究[D];上海師范大學;2011年
,本文編號:1514935
本文鏈接:http://sikaile.net/guanlilunwen/yingxiaoguanlilunwen/1514935.html
最近更新
教材專著