北京市旅游人群行為情感分析調研報告
發(fā)布時間:2018-01-31 06:43
本文關鍵詞: 北京市 旅游人群 行為特征 情感算法 出處:《首都經濟貿易大學》2017年碩士論文 論文類型:學位論文
【摘要】:網絡旅游平臺及大數據技術迅猛發(fā)展,旅游平臺需借助網絡爬蟲以及文本處理等技術獲知如何完善平臺。本報告研究目標就是運用大數據文本分析技術充分挖掘來北京市旅游的人群行為特征如出行時間、客源地結構、出行方式及結伴方式等,同時獲取北京市最具熱度的前100個景點所對應的文本評論數據,組成具有321550條旅游情感評價的語料庫,研究不同行為的旅游人群情感分值差異,從而為完善平臺建設提供建議。本報告主要運用以下四種研究方法:第一,文本聚類。將游客評論進行分詞并轉換成向量,運用K-Means進行聚類,得出旅游人群評價維度。第二,情感分析法。建立情感詞典運用情感分析算法來進行文本維度屬性情感詞的匹配,實現情感分值的量化處理。第三,內容分析法。通過對語料庫中景點評論文本進行詞頻分析,提取與游客情感相關的高頻詞,細化旅游人群情感評價。第四,對比分析法。對比不同行為的旅游人群情感分值以及評價詞語差異。對旅游人群數據進行綜合研究得出主要結論:第一,北京對距離近的地區(qū)產生更大游玩吸引。第二,出行時間對于公園樂園、古跡遺址以及自然景觀類景點的評分影響比較大,情感分值在一年中呈現兩端月份低,中間月份高的現象。第三,結伴方式有不同。單獨出游、家庭出游、朋友出游、情侶出游以及商務旅行對于景點類型的喜好以及評分有差異。第四,出行方式顯個性。選擇跟團游、自由行及自駕游人群畫像有差異,產品喜好與情感分值評價不同。網絡旅游平臺可通過以下來進行優(yōu)化:第一,構建多元評價維度;第二,精確定位推薦旅游產品時間;第三,細化營銷推薦人群;第四,優(yōu)化產品特色服務;第五,加大基礎設施投入。
[Abstract]:Internet tourism platform and big data technology are developing rapidly. Tourism platform needs to know how to improve the platform by means of web crawler and text processing technology. The goal of this report is to fully excavate the behavior characteristics of Beijing tourism population by using big data text analysis technology, such as travel time. Between. At the same time, we obtain the text review data of the top 100 scenic spots with the most heat in Beijing, and form a corpus of 321550 tourism emotion evaluation. The study of different behavior of tourism groups emotional score differences, thus providing suggestions for improving the platform construction. This report mainly uses the following four research methods: first. Text clustering. The tourists' comments are partitioned and converted into vectors, and K-Means are used to cluster to get the tourist crowd evaluation dimension. Second. Affective analysis. The establishment of emotion dictionary using emotional analysis algorithm to match the text dimension attributes emotional words, to achieve the quantification of emotional score processing. Third. Content analysis. Through the word frequency analysis of the comment text of scenic spots in the corpus, extract the high-frequency words related to the tourists' emotion, refine the emotional evaluation of the tourist crowd. 4th. Contrastive analysis. Compare the different behavior of tourism groups emotional scores and evaluation of the differences in words. The comprehensive study of the tourist population data draw the main conclusions: first. Beijing has a greater attraction to nearby areas. Second, travel time has a greater impact on park parks, historic sites and natural landscape sites, emotional scores in the year at both ends of the month low. The phenomenon of high in the middle month. Third, there are different ways of getting together. There are differences in the preference and score of individual travel, family trip, friend trip, couple trip and business travel for the type of scenic spot. 4th. Travel style shows personality. Choose with group tour, free travel and self-driving tour crowd portrait differences, product preferences and emotional evaluation is different. Internet tourism platform can be optimized through the following: first. Constructing multiple evaluation dimension; Second, the time of recommending tourism products; Third, refine the marketing recommendation crowd; 4th, optimize product characteristic service; 5th, increase infrastructure investment.
【學位授予單位】:首都經濟貿易大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F592.7
【參考文獻】
相關期刊論文 前10條
1 李銳;張謙;劉嘉勇;;基于加權word2vec的微博情感分析[J];通信技術;2017年03期
2 胡田翠;李敏;;移動互聯網時代旅游消費者行為分析[J];赤峰學院學報(自然科學版);2017年01期
3 楊艷霞;;基于本體的旅游網絡評論情感分析與預警系統(tǒng)[J];計算機與數字工程;2016年04期
4 涂海麗;唐曉波;;基于在線評論的游客情感分析模型構建[J];現代情報;2016年04期
5 任偉;劉循;;基于情感特征的用戶聚類分析[J];中國新通信;2016年05期
6 陳秀娟;劉林;劉醒驊;;我國出境人群的境外旅游行為特征研究[J];價值工程;2016年03期
7 劉玉嬌;琚生根;伍少梅;蘇,
本文編號:1478493
本文鏈接:http://sikaile.net/guanlilunwen/yingxiaoguanlilunwen/1478493.html
最近更新
教材專著