基于使用信息的Web服務(wù)質(zhì)量評(píng)價(jià)方法
[Abstract]:With the rapid development of the Internet, web service providers develop related Web services in various fields, so there will be a large number of similar Web services for Web service sellers to choose. First, consumers should pay attention to whether Web services satisfy business logic, and second, they should pay attention to QoS, that is, the quality of Web services. However, how to select a service to meet the individual needs of users in the high quality Web service candidate set is one of the topics widely studied by researchers. Based on the in-depth study and analysis of the existing Web service evaluation methods, this paper takes into account the user's personalized requirements for the existing methods, which are only based on the QoS parameters of the Web services. A new Web service evaluation method, WSQEMBUI, is proposed to improve the accuracy of Web service quality evaluation. In the method, the usage data of each service is obtained from the usage log of the Web service mediation server, and then the data is preprocessed, and an evaluation concept tree is established for each service according to the Web service usage information data. Each node of the evaluation concept tree represents an evaluation factor of the service. According to the established concept tree of service quality evaluation, we find a path that is close to the personalized demand factor, that is, the service candidate set. Then calculate the weight of each evaluation factor on the path, and finally give the evaluation results of each service. This paper also proposes an optimization algorithm for quality of service evaluation concept tree which combines the prior knowledge of experts. This optimization algorithm mainly combines the weight of evaluation factors set by experts and the method of machine learning. Finally, the feasibility of the service quality evaluation method is analyzed theoretically. Finally, the experimental results show that the Web service evaluation algorithm for personalized requirements improves the accuracy of Web service quality evaluation to a certain extent.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP393.09
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭世明;高志年;張璐;吳從暉;韋偉;;基于模糊理論的多屬性群決策的web服務(wù)評(píng)價(jià)優(yōu)化算法[J];微電子學(xué)與計(jì)算機(jī);2012年11期
2 王尚廣;孫其博;楊放春;;Web服務(wù)選擇中信譽(yù)度評(píng)估方法[J];軟件學(xué)報(bào);2012年06期
3 馮建湘;武雪媛;;基于灰色模糊綜合評(píng)判的Web服務(wù)質(zhì)量評(píng)價(jià)模型[J];電子商務(wù);2012年02期
4 王永梅;胡學(xué)鋼;;決策樹中ID3算法的研究[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
5 古鵬;廉東本;;基于ESB的服務(wù)質(zhì)量評(píng)價(jià)系統(tǒng)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年04期
6 肖軍;胡雷鳴;;基于SOA的Web服務(wù)質(zhì)量評(píng)價(jià)模型的研究[J];中國管理信息化;2010年13期
7 蔣哲遠(yuǎn);韓江洪;王釗;;動(dòng)態(tài)的QoS感知Web服務(wù)選擇和組合優(yōu)化模型[J];計(jì)算機(jī)學(xué)報(bào);2009年05期
8 李禎;楊放春;蘇森;;基于模糊多屬性決策理論的語義Web服務(wù)組合算法[J];軟件學(xué)報(bào);2009年03期
9 張裔智;趙毅;湯小斌;;MD5算法研究[J];計(jì)算機(jī)科學(xué);2008年07期
10 王國良;梁德群;王新年;王彥春;;基于分箱核密度估計(jì)的非參數(shù)多模態(tài)背景模型[J];計(jì)算機(jī)應(yīng)用;2007年05期
相關(guān)博士學(xué)位論文 前3條
1 孫慧峰;基于協(xié)同過濾的個(gè)性化Web推薦[D];北京郵電大學(xué);2012年
2 謝琪;基于協(xié)同過濾與QoS的個(gè)性化Web服務(wù)推薦研究[D];重慶大學(xué);2012年
3 毛一梅;基于服務(wù)質(zhì)量的Web服務(wù)關(guān)鍵技術(shù)研究[D];東華大學(xué);2009年
,本文編號(hào):2169067
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2169067.html