基于云計算平臺的虛擬資源可擴展存儲算法
發(fā)布時間:2018-08-06 21:20
【摘要】:當(dāng)前虛擬資源存儲算法對規(guī)模較大的虛擬資源無法實現(xiàn)實時傳輸,且存儲能耗高、負(fù)載均衡性較差。為此,提出一種新的基于云計算平臺的虛擬資源可擴展存儲算法,介紹了云計算平臺,其由存儲層、基礎(chǔ)控制層、應(yīng)用接口層和訪問層構(gòu)成,給出其系統(tǒng)架構(gòu)。依據(jù)云計算平臺,通過采集虛擬資源的高階累積量信息特征,利用K-L特征壓縮法實現(xiàn)虛擬資源的低負(fù)荷存儲,針對該過程擴展性能低的弊端對其進行改進。通過自適應(yīng)全域空間搜索找到最佳基函數(shù),對云計算平臺的存儲空間進行重組,得到改進后的虛擬資源存儲空間結(jié)構(gòu)。實驗結(jié)果表明,所提算法存儲空間、時延和能耗均較低,負(fù)載均衡性強。
[Abstract]:The current virtual resource storage algorithm can not realize real-time transmission of large scale virtual resources, and the storage energy consumption is high, and the load balance is poor. In this paper, a new virtual resource scalable storage algorithm based on cloud computing platform is proposed. The cloud computing platform is composed of storage layer, basic control layer, application interface layer and access layer. According to cloud computing platform, by collecting the information features of high-order cumulant of virtual resources, K-L feature compression method is used to realize the low-load storage of virtual resources. The optimal basis function is found by adaptive global space search and the storage space of cloud computing platform is reorganized to obtain the improved virtual resource storage space structure. The experimental results show that the proposed algorithm has lower storage space, lower delay and energy consumption, and better load balance.
【作者單位】: 長春工業(yè)大學(xué)人文信息學(xué)院;
【基金】:吉林省高等教育教學(xué)改革研究課題 吉林省高等教育學(xué)會高教科研課題(JGJX2016D206,JGJX2016D207)資助
【分類號】:TP393.0
[Abstract]:The current virtual resource storage algorithm can not realize real-time transmission of large scale virtual resources, and the storage energy consumption is high, and the load balance is poor. In this paper, a new virtual resource scalable storage algorithm based on cloud computing platform is proposed. The cloud computing platform is composed of storage layer, basic control layer, application interface layer and access layer. According to cloud computing platform, by collecting the information features of high-order cumulant of virtual resources, K-L feature compression method is used to realize the low-load storage of virtual resources. The optimal basis function is found by adaptive global space search and the storage space of cloud computing platform is reorganized to obtain the improved virtual resource storage space structure. The experimental results show that the proposed algorithm has lower storage space, lower delay and energy consumption, and better load balance.
【作者單位】: 長春工業(yè)大學(xué)人文信息學(xué)院;
【基金】:吉林省高等教育教學(xué)改革研究課題 吉林省高等教育學(xué)會高教科研課題(JGJX2016D206,JGJX2016D207)資助
【分類號】:TP393.0
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程文芳;;基于云計算平臺的圖書館構(gòu)建[J];電子科技;2013年06期
2 劉蜀陽;曾慶燕;杜彥濤;王子虎;;政府主導(dǎo)的云計算平臺建設(shè)探討[J];硅谷;2012年11期
3 鄧文蓮;;訪問控制體系在云計算平臺中的應(yīng)用[J];科技通報;2012年12期
4 ;吉林省公共計算平臺[J];工業(yè)技術(shù)經(jīng)濟;2014年02期
5 徐宗標(biāo);;云計算平臺安全體系及應(yīng)對措施[J];電信技術(shù);2014年02期
6 徐榕h,
本文編號:2169024
本文鏈接:http://sikaile.net/guanlilunwen/ydhl/2169024.html
最近更新
教材專著