承包商視角下的改進掙得值法研究
[Abstract]:In the engineering construction industry is still in the rapid development of contemporary, contractors as a major part of the implementation of the project, in which plays a pivotal role. As one of the three major parts of project management, cost is also the content that project managers should focus on and control management. Contractor's cost control is the core to measure the success of the project and the efficiency of the enterprise. It is very important for the analysis and evaluation of the engineering construction project and related enterprises: as a traditional cost analysis method, the earned value method is still of practical value. Plays an important role in helping to analyze costs and progress. However, when the contractor uses it, its pertinence is not strong. In the face of the current situation, the thesis has done the following main work: analyze the essence of earned value method, find its unreasonable place, and carry on the improvement from the contractor's point of view, This paper introduces new indexes PVc and EVc, to get new analysis indexes and distinguishes some former indexes. On the premise of assuming contractor's planned profit the analysis results are summed up and summarized completely. The GA-SVM estimation model is established to determine the value of PVc. The support vector machine estimation model is introduced, the characteristics of the method and the problems to be solved are summarized, the genetic algorithm is briefly described, and the GA-SVM estimation model is constructed. This paper explains the process of using the model to estimate and the important content involved in it; summarizes the process of cost analysis based on the GA-SVM estimation model and the improved earned value; and explains the application of the improved earned value method to the multi-time point analysis. Case N is introduced to collect similar projects in this area using GA-SVM model to carry out regression analysis and predict their PVc value, and cost analysis is carried out from the contractor's point of view, and by comparing the monitoring data of different time nodes, the management effect during the period is evaluated. Compared with the traditional method, the advantages of the improved method are summarized. By improving the traditional earned value method, it can be fully applied by the contractor and can better reflect the complex situation of project schedule and cost. At the same time, the introduction of scientific estimation methods and the application of computer technology to change the inefficient state of project management is a preliminary exploration for the scientific implementation of engineering project management, which is of certain practical significance.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:F406.72;F426.92
【相似文獻】
相關期刊論文 前10條
1 黃寶珍;;基于灰色理論的模糊估算模型的建立[J];山西建筑;2007年07期
2 叢丕福;曲麗梅;韓庚辰;楊新梅;王臣立;;遼東灣海水透明度的遙感估算模型[J];地球科學進展;2011年03期
3 杜自強;王建;沈宇丹;;山丹縣草地地上生物量遙感估算模型[J];遙感技術與應用;2006年04期
4 薛峰,謝運祥,吳捷;直接轉矩控制系統(tǒng)的轉速估算模型及其參數(shù)補償方法[J];電工技術學報;1998年05期
5 盧霞;;沿海灘涂棉花葉片葉綠素含量高光譜遙感估算模型研究[J];安徽農業(yè)科學;2011年12期
6 徐新剛;吳炳方;蒙繼華;李強子;黃文江;劉良云;王紀華;;農作物單產遙感估算模型研究進展[J];農業(yè)工程學報;2008年02期
7 徐小軍;杜華強;周國模;范文義;;基于遙感植被生物量估算模型自變量相關性分析綜述[J];遙感技術與應用;2008年02期
8 岑奕;張良培;村松加奈子;;基于高光譜數(shù)據(jù)日本溫帶地區(qū)植被凈初級生產力估算模型應用研究[J];遙感學報;2008年05期
9 汪皓;楊華舒;胡應庭;;基于模糊指數(shù)平滑法構建水利工程項目投資估算模型——以云南省待建F水電站項目為例[J];項目管理技術;2012年08期
10 黃河;何芬;李政;倪維斗;何建坤;張希良;麻林巍;;IGCC電廠的工程設計、采購和施工成本的估算模型[J];動力工程;2008年03期
相關會議論文 前1條
1 陳朝斌;;鐵礦石經濟評價模型建立的探討[A];2012年全國煉鐵生產技術會議暨煉鐵學術年會文集(下)[C];2012年
相關博士學位論文 前1條
1 程志慶;基于高光譜信息的楊樹人工林生產力遙感估算模型的研究[D];中國林業(yè)科學研究院;2015年
相關碩士學位論文 前10條
1 柳燁;參考作物蒸發(fā)蒸騰量的少因子估算模型研究[D];西北農林科技大學;2016年
2 王靜;基于衛(wèi)星遙感的長三角主要城市PM2.5估算[D];華東師范大學;2016年
3 劉桂鵬;基于高光譜遙感的玉米冠層參數(shù)及葉綠素估算模型研究[D];沈陽農業(yè)大學;2016年
4 賀婷;玉米氮素營養(yǎng)監(jiān)測的高光譜遙感估算模型研究[D];沈陽農業(yè)大學;2016年
5 何斐璐;承包商視角下的改進掙得值法研究[D];西南交通大學;2015年
6 程博;面向敏捷開發(fā)項目的工作量估算模型的研究與應用[D];北京工業(yè)大學;2012年
7 馬劍;軟件開發(fā)工作量估算模型研究及其在項目管理中的應用[D];華北電力大學;2012年
8 賀軍亮;基于有機質光譜診斷指數(shù)的土壤重金屬含量估算模型研究[D];南京師范大學;2007年
9 劉飛鴻;衛(wèi)星對地偵察威脅估算模型研究[D];西安工業(yè)大學;2014年
10 周毅軍;濕地植物葉片重金屬含量高光譜遙感估算模型研究[D];福建師范大學;2014年
,本文編號:2248497
本文鏈接:http://sikaile.net/guanlilunwen/xiangmuguanli/2248497.html