自適應(yīng)遺傳算法在越庫車輛調(diào)度問題中的應(yīng)用研究
[Abstract]:With the rapid development of national economy, the demand for social logistics has increased significantly, and the logistics industry has been promoted to maintain sustainable, stable and rapid development. In the actual operation process of logistics, vehicle scheduling has always been the key factor affecting the transportation efficiency and logistics cost of enterprises. Crossing the warehouse refers to a way of organizing the whole process of loading and unloading the goods from the loading truck to the distribution center, the goods are distributed and processed, and then to the loading door. The goods will not be stored in the distribution center, but will be distributed directly. The implementation of this organization can reduce and reduce the cost, time, link and so on, thus greatly improving the efficiency of logistics. The problem of vehicle scheduling over warehouse can be described as the problem of how to distribute vehicles and warehouse doors reasonably under certain constraints, so that the whole operation can be optimized in cost or time. It is a typical NP difficult (NP-Hard) problem, and it is also one of the most difficult classical combinatorial optimization problems. In the past few decades, researchers have been constantly looking for and trying new scheduling algorithms to improve operational efficiency, reduce operating costs and time, and increase the competitiveness of enterprises. Genetic algorithm, as one of the most important algorithms in bionic methods, is also one of the most widely used evolutionary computing methods. Genetic algorithm has irreplaceable advantages in scheduling optimization research because of its adaptability, global optimality and implicit parallelism in solving various nonlinear optimization problems. In this paper, according to the characteristics of multi-warehouse gate vehicle scheduling problem, based on genetic algorithm, an improved new algorithm is proposed, which is more suitable for solving multi-warehouse gate vehicle scheduling problem. Because of the problems of slow convergence, poor stability and premature phenomenon in the application of simple genetic algorithm, some existing improved adaptive genetic algorithms are easy to produce local optimal solution and other defects in the process of solving. Based on the whole process of genetic algorithm, aiming at the defects of genetic algorithm, such as easy to fall into local optimization in the early stage and slow evolution in the middle and late stages, this paper improves the population diversity, individual optimal preservation strategy, cross probability and mutation probability. According to the actual problems, an adaptive genetic algorithm is proposed, which can effectively solve the vehicle scheduling problem of multi-warehouse gate crossing. The experimental results show that the convergence rapidity and stability of the algorithm are obviously improved, and the expected results are achieved. Finally, a multi-warehouse gate vehicle scheduling system is developed according to the model and improved algorithm of cross-warehouse vehicle scheduling.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U492.22;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱力立,張煥春,經(jīng)亞枝;基于六模糊控制器的自適應(yīng)遺傳算法(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2003年02期
2 張群,趙剛;基于模糊邏輯控制器的自適應(yīng)遺傳算法[J];工業(yè)工程與管理;2004年06期
3 李井明;劉志斌;;基于自適應(yīng)遺傳算法的水污染控制系統(tǒng)規(guī)劃[J];科學(xué)技術(shù)與工程;2006年22期
4 劉宗發(fā);王彥生;徐紅玉;楊俊森;;基于自適應(yīng)遺傳算法的單層球面網(wǎng)殼優(yōu)化分析[J];河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年06期
5 陳超武;董紹華;;求解煉鋼—連鑄批量問題的自適應(yīng)遺傳算法[J];制造業(yè)自動(dòng)化;2007年02期
6 朱志宇;王建華;;基于混沌優(yōu)化自適應(yīng)遺傳算法的數(shù)據(jù)關(guān)聯(lián)求解[J];航天控制;2007年04期
7 王海波;宋星原;王文凱;;動(dòng)態(tài)加速自適應(yīng)遺傳算法的應(yīng)用[J];水電能源科學(xué);2008年06期
8 王愛明;王壽武;;基于信息熵的自適應(yīng)遺傳算法研究[J];機(jī)電工程技術(shù);2008年11期
9 姜靜;譚博學(xué);姜琳;;基于改進(jìn)自適應(yīng)遺傳算法的仿真研究[J];山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
10 韓江洪;王梅芳;馬學(xué)森;王躍飛;;基于自適應(yīng)遺傳算法的虛擬企業(yè)伙伴選擇求解[J];計(jì)算機(jī)集成制造系統(tǒng);2008年01期
相關(guān)會(huì)議論文 前10條
1 楚永賓;唐振;劉小平;衛(wèi)星;張利;;基于自適應(yīng)遺傳算法的單點(diǎn)交通信號(hào)控制方法[A];全國(guó)第21屆計(jì)算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議(CACIS·2010)暨全國(guó)第2屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
2 郭毓;林喜波;胡維禮;;基于代溝信息的自適應(yīng)遺傳算法[A];江蘇省自動(dòng)化學(xué)會(huì)七屆四次理事會(huì)暨2004學(xué)術(shù)年會(huì)青年學(xué)者論壇論文集[C];2004年
3 張文廣;周紹磊;李新;;一種新的改進(jìn)型自適應(yīng)遺傳算法研究[A];2005年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2005年
4 劉洪杰;王秀峰;王治寶;;多峰搜索的自適應(yīng)遺傳算法[A];第二十一屆中國(guó)控制會(huì)議論文集[C];2002年
5 潘偉;楊勁松;;基于實(shí)數(shù)自適應(yīng)遺傳算法的μ綜合問題[A];2007中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年
6 鐘守楠;;自適應(yīng)遺傳算法的探討[A];Systems Engineering, Systems Science and Complexity Research--Proceeding of 11th Annual Conference of Systems Engineering Society of China[C];2000年
7 楊澤青;劉麗冰;譚志洪;劉偉玲;;自適應(yīng)遺傳算法在柔性檢測(cè)路徑規(guī)劃中的應(yīng)用[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
8 王曉鵬;;基于混合自適應(yīng)遺傳算法的飛機(jī)氣動(dòng)優(yōu)化設(shè)計(jì)[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(上冊(cè))[C];1999年
9 楊林德;劉學(xué)增;王悅照;朱合華;仇圣華;;改進(jìn)的自適應(yīng)遺傳算法及其工程應(yīng)用[A];第八次全國(guó)巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2004年
10 危濤;宋萬杰;張林讓;;自適應(yīng)遺傳算法在M-序列碼搜索中的應(yīng)用[A];第八屆全國(guó)信號(hào)與信息處理聯(lián)合學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 黃利;一類自適應(yīng)遺傳算法的漸近行為研究[D];武漢大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 李欣;自適應(yīng)遺傳算法的改進(jìn)與研究[D];南京信息工程大學(xué);2008年
2 王寧;基于自適應(yīng)遺傳算法的城市電網(wǎng)網(wǎng)架規(guī)劃[D];華北電力大學(xué)(北京);2008年
3 閆宏亮;改進(jìn)的自適應(yīng)遺傳算法在桁架結(jié)構(gòu)優(yōu)化中的應(yīng)用[D];長(zhǎng)安大學(xué);2009年
4 張玉萍;自適應(yīng)遺傳算法的研究及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2009年
5 陳忠華;基于自適應(yīng)遺傳算法的模糊控制器優(yōu)化設(shè)計(jì)[D];重慶理工大學(xué);2010年
6 李坤;參數(shù)參與進(jìn)化的自適應(yīng)遺傳算法研究[D];南昌航空大學(xué);2010年
7 陳超;自適應(yīng)遺傳算法的改進(jìn)研究及其應(yīng)用[D];華南理工大學(xué);2011年
8 閆妍;一種新的自適應(yīng)遺傳算法[D];哈爾濱工程大學(xué);2007年
9 呂德剛;改進(jìn)自適應(yīng)遺傳算法在防爆高能電機(jī)優(yōu)化設(shè)計(jì)中的應(yīng)用[D];哈爾濱理工大學(xué);2007年
10 王思艷;自適應(yīng)遺傳算法的研究[D];華北電力大學(xué)(河北);2009年
,本文編號(hào):2499427
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/2499427.html