基于遺傳算法的關(guān)聯(lián)規(guī)則在AGV系統(tǒng)中的研究與應(yīng)用
[Abstract]:Automatic guided vehicle (Automated Guided Vehicle,AGV) is the key equipment of modern logistics system. More and more large and medium-sized enterprises begin to apply AGV system, try to replace manual operation with automatic freight robot, save human resource cost and realize industrial automation step by step. AGV system accumulates a lot of irregular data in the process of operation. How to use data mining technology to effectively analyze the data of AGV system, extract useful information from it, and use this information to improve the operation efficiency of AGV system is a problem worthy of study. In this paper, an association rule method based on genetic algorithm is proposed, and the data in AGV system are analyzed. The main contents are as follows: the related knowledge of data mining, genetic algorithm and association rules is described. In view of the shortcomings of the "support-confidence" association rule model, two evaluation criteria, understanding degree and interest degree, are introduced to evaluate an association rule according to the degree of support, confidence, understanding and interest. In order to solve the problem that each evaluation standard should scan the database repeatedly when mining association rules, an attribute directory structure is proposed, according to which the number of scanning databases can be effectively reduced. In order to reduce the mining time of association rules. According to the characteristics of global optimization of genetic algorithm, an association rule algorithm based on genetic algorithm is proposed. The chromosome coding method, support degree and confidence level of the algorithm are introduced in detail. The fitness function is constructed by understanding degree and interest degree, and the fitness value is calculated by combining the attribute directory to generate the initial population, design genetic operator and so on. Finally, the algorithm is applied to AGV system, and some valuable association rules are obtained, and the results are compared with other algorithms to prove the efficiency of the algorithm. Through the analysis and interpretation of these rules, the optimization of AGV system, warehouse cargo arrangement, cargo reserve, staff distribution and other aspects of valuable information.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣志全,陳燕;基于遺傳算法的關(guān)聯(lián)規(guī)則挖掘模型[J];大連海事大學(xué)學(xué)報(bào);2003年03期
2 宋澤鋒,周萬(wàn)珍,劉濤,李俠;一種基于遺傳算法的關(guān)聯(lián)規(guī)則挖掘算法[J];福建電腦;2005年08期
3 周欣,沙朝鋒,朱揚(yáng)勇,施伯樂(lè);興趣度——關(guān)聯(lián)規(guī)則的又一個(gè)閾值[J];計(jì)算機(jī)研究與發(fā)展;2000年05期
4 耿茵茵,蔡安妮,孫景鰲;自動(dòng)圖像閾值分割算法[J];計(jì)算機(jī)工程與應(yīng)用;2002年17期
5 張春生;宋琳琳;;分段支持度Apriori算法及應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2010年16期
6 許國(guó)艷,史宇清;遺傳算法在關(guān)聯(lián)規(guī)則挖掘中的應(yīng)用[J];計(jì)算機(jī)工程;2002年07期
7 陸晶,賽英;基于綜合度量的關(guān)聯(lián)規(guī)則挖掘算法[J];計(jì)算機(jī)工程;2004年22期
8 陳自立;徐婭萍;顧立彬;;基于模糊Q學(xué)習(xí)算法的AGV路徑規(guī)劃研究[J];制造業(yè)自動(dòng)化;2012年11期
9 吉根林;遺傳算法研究綜述[J];計(jì)算機(jī)應(yīng)用與軟件;2004年02期
10 劉玉文;;基于十字鏈表的Apriori算法的研究與改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2012年05期
本文編號(hào):2495547
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/2495547.html