基于生命周期能值理論的秸稈生物質能可持續(xù)發(fā)展研究
本文選題:秸稈發(fā)電 + 秸稈成型燃料; 參考:《湖南大學》2015年碩士論文
【摘要】:生物質能源是一種產量豐富的可再生的化石替代能源,對緩解能源危機,減少化石能源使用對環(huán)境的破壞具有重要作用。秸稈作為能源收集和使用,不僅可以避免資源浪費,還可以減少隨意堆積、焚燒帶來的污染。但是秸稈作為生物質能源在生產和使用過程中,也會消耗能量、污染環(huán)境。不同的秸稈利用方式帶來的環(huán)境、經濟效益也不盡相同。因此,對秸稈生物質能進行科學評價,比較不同秸稈利用方式的優(yōu)劣,對促進秸稈生物質質能源可持續(xù)發(fā)展具有重要意義。本文采用生命周期能值評價方法對兩種不同的秸稈發(fā)電系統(tǒng)進行了評價。通過本文分析,獲得如下結論:(1)對秸稈直燃發(fā)電系統(tǒng)統(tǒng)進行了生命周期能值分析,得出秸稈直燃發(fā)電系統(tǒng)的生命周期能值轉換率(LC-Tr)為4.98E+04 se J/J,生命周期能值產出率(LC-EYR)為1.17,生命周期環(huán)境負載率(LC-ELR)為3.06,生命周期可再生指數(shù)(LC-RI)為24.6%,生命周期可持續(xù)性指數(shù)(LC-ESI)為0.38;(2)對秸稈成型燃料發(fā)電系進行了生命周期能值分析,得出系統(tǒng)的LC-T r值為3.4 5 E+04 s e J/J,低于秸稈直燃發(fā)電系統(tǒng),LC-E Y R值為1.1 5,LC-E LR值為2.61,LC-R I值為2 7.7%,LC-E S I值為0.44,系統(tǒng)環(huán)境壓力小于秸稈直燃發(fā)電系統(tǒng),可持續(xù)發(fā)展能力優(yōu)于秸稈直燃發(fā)電系統(tǒng)。兩系統(tǒng)的生命周期能值指標,以及燃煤發(fā)電、燃油發(fā)電的各項指標的對比分析結果表明,秸稈成型燃料發(fā)電與秸稈直燃發(fā)電相比具有較好的環(huán)境可持續(xù)性,且兩系統(tǒng)的可持續(xù)性均優(yōu)于燃煤發(fā)電和燃油發(fā)電;(3)對秸稈直燃發(fā)電系統(tǒng)和秸稈成型燃料發(fā)電系統(tǒng)的生命周期各階段能值分析表明,種植階段能值投入占生命周期總能值投入比例最大,分別占59.98%和52.09%,秸稈直燃發(fā)電系統(tǒng)運輸階段能值投入(8.92E+13 se J)遠大于秸稈成型燃料發(fā)電系統(tǒng)運輸階段能值投入(8.58E+12 se J);(4)對秸稈直燃發(fā)電系統(tǒng)和秸稈成型燃料發(fā)電系統(tǒng)的碳排放進行了計算,結果表明秸稈成型燃料發(fā)電的溫室氣體排放量為7.77 g/MJ,遠小于秸稈直燃發(fā)電的23.14 g/MJ,主要是由于減小了柴油的溫室氣體貢獻;與燃煤發(fā)電相比,秸稈發(fā)電系統(tǒng)二氧化碳減排效果明顯。(5)以秸稈發(fā)電廢水和秸稈酒糟廢液為例,對秸稈生物質能廢棄物處理系統(tǒng)進行了能值分析。結算得出秸稈發(fā)電廢水和秸稈酒糟廢液的能值轉換率分別為-5.06+05 se J/g和-6.64E+06 se J/g,能值產出率分別為1.57和2.17,結果主要受廢水水質和處理工藝的影響;采用生命周期能值評價方法對秸稈發(fā)電系統(tǒng)進行評價,可以衡量自然環(huán)境資源對系統(tǒng)的作用和貢獻。通過過程能值分析,可以明確系統(tǒng)各階段、各能物流能值投入的比重,減少總能值投入,確定最佳產品方案。生命周期能值分析對促進秸稈生物質能的可持續(xù)發(fā)展具有重要意義。
[Abstract]:Biomass energy is a kind of renewable fossil alternative energy with abundant output, which plays an important role in alleviating the energy crisis and reducing the damage to the environment caused by fossil energy use. As energy collection and use, straw can not only avoid the waste of resources, but also reduce the pollution caused by random accumulation and incineration. However, as biomass energy, straw will also consume energy and pollute the environment. Different ways of straw use bring about different economic benefits. Therefore, it is of great significance to evaluate the biomass energy of straw scientifically and compare the advantages and disadvantages of different straw utilization methods to promote the sustainable development of straw biomass energy. In this paper, two different straw power generation systems are evaluated by life cycle emergy evaluation method. Through the analysis of this paper, the following conclusions are obtained: (1) the life-cycle energy analysis of straw direct-fired power generation system is carried out. The results show that the life cycle emergy conversion rate (LC-Trr) of straw direct-fired power generation system is 4.98E04 se J / J, the life-cycle emergy output rate LC-EYR is 1.17, the life cycle environmental load ratio (LC-ELR) is 3.06, the life cycle renewable index (LC-RI) is 24.6e, and the life cycle sustainability is higher. The index LC-ESI (0.38) was used to analyze the life-cycle energy of straw briquetting fuel power generation system. The results show that the LC-T r value of the system is 3.45 E 04 s e J / J, and the LC-E Y R value of the system is 1.15 L C-E R value 1.15 L C-E LR value is 2.61 m LC-R value is 27.7 L C-E S I value is 0.44, the environmental pressure of the system is less than that of the straw direct burning power generation system. The ability of sustainable development is superior to that of direct-fired straw power generation system. The comparison and analysis of the life cycle energy index of the two systems as well as the indexes of coal-fired power generation and fuel power generation show that straw briquetting fuel power generation has better environmental sustainability than straw direct-fired power generation. The sustainability of the two systems is better than that of coal-fired power generation and oil-fired power generation. The ratio of emergy input to total energy input in life cycle is the largest in planting stage. 59.98% and 52.09%, respectively. The energy input of Straw Direct fired Power system in transportation stage is 8.92E 13se JJ, much larger than that of Straw formed fuel Power Generation system in transportation stage 8.58E 12 se JJ 4.) Straw direct-fired power generation system and straw briquetting fuel power generation system are produced by straw direct-fired power generation system and straw briquetting fuel generation system. The carbon emissions of the system have been calculated, The results show that the greenhouse gas emission from straw briquetting fuel generation is 7.77 g / MJ, which is much smaller than 23.14 g / MJ of straw direct-fired power generation, which is mainly due to the reduction of greenhouse gas contribution from diesel fuel, and compared with coal-fired power generation, The carbon dioxide abatement effect of straw power generation system is obvious. (5) taking straw power generation wastewater and waste liquor of straw distiller's grains as an example, the energy value of straw biomass energy waste treatment system is analyzed. The results showed that the energy conversion rates of straw power generation wastewater and straw lees waste liquor were -5.06 se J / g and -6.64 E 06 se J / g respectively, and the energy output rates were 1.57 and 2.17, respectively. The results were mainly affected by wastewater quality and treatment process. The use of life-cycle emergy evaluation method to evaluate straw power generation system can measure the role and contribution of natural resources to the system. Through the process emergy analysis, the proportion of energy input in each stage of the system can be determined, the total energy input can be reduced, and the best product scheme can be determined. Life cycle energy analysis plays an important role in promoting the sustainable development of straw biomass energy.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TK6
【參考文獻】
相關期刊論文 前10條
1 徐亞云;田宜水;趙立欣;姚宗路;侯書林;孟海波;;不同農作物秸稈收儲運模式成本和能耗比較[J];農業(yè)工程學報;2014年20期
2 趙前;杜偉;;2013年世界能源行業(yè)發(fā)展狀況[J];中國能源;2014年03期
3 夏訓峰;張軍;賈春蓉;李曹樂;席北斗;;基于能值方法的甘薯燃料乙醇產業(yè)生態(tài)系統(tǒng)分析[J];環(huán)境科學研究;2012年10期
4 陳豫;胡偉;楊改河;馮永忠;;戶用沼氣池生命周期環(huán)境影響及經濟效益評價[J];農機化研究;2012年09期
5 蘇瑜;黃連光;王秀敏;;秸稈焚燒現(xiàn)狀與對策探討[J];寧夏農林科技;2012年03期
6 高慧;胡山鷹;李有潤;陳定江;朱兵;;甜高粱乙醇全生命周期溫室氣體排放[J];農業(yè)工程學報;2012年01期
7 劉華財;陰秀麗;吳創(chuàng)之;;秸稈發(fā)電系統(tǒng)能值分析[J];農業(yè)機械學報;2011年11期
8 楊紅旗;路鳳銀;郝仰坤;董兵;;中國玉米產業(yè)現(xiàn)狀與發(fā)展問題探討[J];中國農學通報;2011年06期
9 林海龍;武國慶;羅虎;鄧立康;黃蔚霞;;我國纖維素燃料乙醇產業(yè)發(fā)展現(xiàn)狀[J];糧食與飼料工業(yè);2011年01期
10 胡徐騰;;纖維素乙醇研究開發(fā)進展[J];化工進展;2011年01期
相關博士學位論文 前2條
1 楊慧;基于能值分析的植物生物質能評價的研究[D];華南理工大學;2011年
2 陳曉;基于生態(tài)經濟學模型的新疆可持續(xù)發(fā)展度量研究[D];新疆大學;2005年
相關碩士學位論文 前4條
1 白宏明;秸稈發(fā)電的發(fā)展?jié)摿ρ芯縖D];華北電力大學(北京);2010年
2 趙紅穎;生物質發(fā)電的生命周期評價[D];西南交通大學;2010年
3 徐劍琦;林木生物質能資源量及資源收集半徑的計量研究[D];北京林業(yè)大學;2006年
4 曾敏;基于生命周期評價的廢舊家電資源化研究及其案例分析[D];廣東工業(yè)大學;2006年
,本文編號:1948115
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1948115.html