基于電力需求響應(yīng)的板坯熱軋負(fù)荷分析與調(diào)度
本文選題:熱軋 + 負(fù)荷調(diào)度 ; 參考:《湘潭大學(xué)》2015年博士論文
【摘要】:電力供需平衡是電力系統(tǒng)運行調(diào)度的核心問題,風(fēng)電、光伏等清潔低碳可再生新能源的快速增長給電力系統(tǒng)傳統(tǒng)的運行調(diào)度和控制模式帶來了嚴(yán)峻的挑戰(zhàn)。近年來國際上提出了基于需求響應(yīng)促進(jìn)電力平衡和消納新能源的概念。需求響應(yīng)模式下,電力用戶對電網(wǎng)給出的價格信號或激勵信號作出響應(yīng),改變其原有的電力消耗模式從而參與電力系統(tǒng)運行。電力用戶側(cè)負(fù)荷資源具有靈活部署和快速響應(yīng)的特點,因此能夠響應(yīng)發(fā)電側(cè)出力的變化,減小可再生能源接入造成的電網(wǎng)波動,維持電力供需平衡。高耗能工業(yè)電力負(fù)荷參與需求響應(yīng)潛力巨大,相關(guān)研究與實踐逐步得到重視,然而,目前工業(yè)電力需求響應(yīng)相關(guān)研究主要集中在連續(xù)過程生產(chǎn)上。與連續(xù)過程生產(chǎn)相比,間歇過程的生產(chǎn)單元具有強耦合性,生產(chǎn)過程需保證工藝的完整性和物流的連續(xù)性,需求響應(yīng)不能影響正常生產(chǎn),傳統(tǒng)的直接負(fù)荷控制、可中斷負(fù)荷等需求響應(yīng)負(fù)荷控制方法無法直接應(yīng)用間歇生產(chǎn)過程中。本論文工作將鋼鐵電力大用戶的間歇生產(chǎn)負(fù)荷資源納入電力系統(tǒng)調(diào)度體系,通過生產(chǎn)負(fù)荷的主動縮減和峰谷轉(zhuǎn)移來減小電網(wǎng)功率波動,促進(jìn)電力供需平衡,對生產(chǎn)用戶而言則可以減小用電成本。具體以板坯熱軋這一典型間歇生產(chǎn)過程為研究對象,基于材料加工過程和生產(chǎn)工藝流程分析板坯熱軋的負(fù)荷特征,建立需求響應(yīng)負(fù)荷調(diào)度與熱軋生產(chǎn)控制間的關(guān)聯(lián),在保證生產(chǎn)工藝約束前提下,研究兼顧用電經(jīng)濟性目標(biāo)與生產(chǎn)工藝目標(biāo)的熱軋負(fù)荷調(diào)度方法,減小企業(yè)用電成本,拓展電力需求響應(yīng)負(fù)荷類型,促進(jìn)電網(wǎng)穩(wěn)定和新能源消納。論文具體研究內(nèi)容包括:1.分析了板坯熱軋加工過程機理及軋制參數(shù)數(shù)值計算模型,重點研究了板坯熱軋過程的軋制形變及工藝參數(shù)模型、軋制力模型和溫度模型。通過機理分析和數(shù)學(xué)推導(dǎo)確立軋制負(fù)荷與軋機、軋件相關(guān)參數(shù)間的數(shù)值計算關(guān)系,建立軋制過程的負(fù)荷數(shù)值計算模型,并實現(xiàn)Matlab/Simulink環(huán)境下的板坯熱軋道次負(fù)荷仿真計算平臺,基于該平臺進(jìn)行熱軋過程負(fù)荷參數(shù)化分析,確定不同工藝參數(shù)與軋制負(fù)荷的相關(guān)關(guān)系及其對軋制負(fù)荷影響的敏感度。2.研究了以最小化軋制能耗為目標(biāo)的中厚板軋制規(guī)程優(yōu)化設(shè)計方法;诘来伍g壓下率控制的軋制負(fù)荷分配方法,結(jié)合軋制過程負(fù)荷模型,建立了中厚板最小能耗軋制規(guī)程優(yōu)化設(shè)計模型。針對中厚板軋制生產(chǎn)特點及其對算法全局搜索能力和收斂速度的要求,提出一種改進(jìn)粒子群優(yōu)化(IPSO)求解算法用于模型求解,實驗結(jié)果表明,IPSO應(yīng)用于軋制規(guī)程優(yōu)化,能耗明顯降低,算法全局搜索能力強且收斂速度快,綜合性能優(yōu)于遺傳算法、標(biāo)準(zhǔn)PSO及幾種常用改進(jìn)算法。方法不僅為軋制過程的電力負(fù)荷縮減提供技術(shù)指導(dǎo),還可用于支撐軋制過程電力負(fù)荷預(yù)測。3.研究了熱軋生產(chǎn)控制與需求響應(yīng)負(fù)荷調(diào)度的關(guān)聯(lián)及優(yōu)化調(diào)度方法。在價格型需求響應(yīng)環(huán)境下,考慮最小化生產(chǎn)用電成本,基于熱軋批量計劃問題的車輛路徑規(guī)劃模型,提出一種面向經(jīng)濟負(fù)荷調(diào)度的熱軋調(diào)度兩階段優(yōu)化方法,第一階段通過熱軋批量計劃編制確定軋制單元及生產(chǎn)負(fù)荷,第二階段在此基礎(chǔ)上實施分時電價下的負(fù)荷轉(zhuǎn)移重調(diào)度,優(yōu)化軋制單元加工次序和生產(chǎn)空閑等待時間進(jìn)行避峰生產(chǎn)。實驗結(jié)果表明:所提出方法可降低生產(chǎn)用電成本,并通過響應(yīng)電價參與電網(wǎng)調(diào)峰。4.提出了基于價格響應(yīng)的板坯熱軋負(fù)荷最優(yōu)調(diào)度模型及求解算法。針對兩階段優(yōu)化中熱軋批量計劃與需求響應(yīng)負(fù)荷調(diào)度分離,難于實現(xiàn)最優(yōu)調(diào)度結(jié)果的問題,建立熱軋生產(chǎn)調(diào)度多目標(biāo)集成優(yōu)化模型,在實施最小化用電成本的經(jīng)濟負(fù)荷調(diào)度時同步考慮相鄰板坯間懲罰值。提出一種基于NSGA-II的多目標(biāo)生產(chǎn)調(diào)度優(yōu)化算法進(jìn)行模型求解,針對多目標(biāo)優(yōu)化Pareto最優(yōu)解集,考慮目標(biāo)偏好性,設(shè)計了用于不同生產(chǎn)場景下工程最優(yōu)解選取的三種決策模式。選取多種對比方法從不同角度與本章所提出方法對比,結(jié)果表明所提出模型有效,算法性能良好。5.面向間歇生產(chǎn)過程中普遍存在的多產(chǎn)線并行生產(chǎn)環(huán)境,研究了基于價格需求響應(yīng)的多機并行間歇負(fù)荷調(diào)度的泛化模型。在產(chǎn)線能力滿足生產(chǎn)需求的前提下,以最小化生產(chǎn)用電成本為目標(biāo),建立由整數(shù)變量和連續(xù)時間變量表達(dá)的需求分批、產(chǎn)線分配、批量調(diào)度間約束關(guān)系,并針對模型中的非線性生產(chǎn)約束條件進(jìn)行線性化轉(zhuǎn)換,構(gòu)建問題的MILP模型并進(jìn)行實例求解。將求解結(jié)果與廣泛采用的最早完工時間模型進(jìn)行對比,結(jié)果表明模型具有較好的用電成本節(jié)省和負(fù)荷調(diào)峰效果。
[Abstract]:Power supply and demand balance is the core problem of power system operation and scheduling. The rapid growth of clean low carbon renewable energy, such as wind power and photovoltaic, has brought serious challenges to the traditional operation scheduling and control mode of power system. In recent years, the concept of demand response to promote power balance and eliminate new energy is proposed in recent years. In response to the mode, the power users respond to the price signals or incentive signals given by the power grid, change their original power consumption mode and participate in the operation of the power system. The power user side load resources have the characteristics of flexible deployment and rapid response, so it can respond to the change of power generation force and reduce the access to renewable energy. The power supply and demand balance of the power grid is maintained. The demand response potential of the high energy consuming industrial power load is great, and the related research and practice are gradually paid attention. However, the related research on the response of industrial electric power demand is mainly concentrated on the continuous process production. The process of production needs to ensure the integrity of the process and the continuity of the logistics. The demand response can not affect the normal production. The traditional direct load control, the interruptible load and other demand response load control methods can not be directly applied in the intermittent production process. This paper puts the batch production load resources of the iron and steel power large users into the power system adjustment in this paper. Through the active reduction of production load and peak valley transfer to reduce the power fluctuation of the power grid and promote the balance of power supply and demand, the cost of electricity consumption can be reduced for the production users. The typical batch process of slab hot rolling is studied, and the load of hot rolled slab is analyzed based on the process of material processing and the process flow. The relationship between demand response load scheduling and hot rolling production control is established. Under the premise of ensuring production process constraints, the hot rolling load scheduling method which takes both electricity economic targets and production process targets is studied, reducing the cost of electricity consumption, expanding the response load type of power demand, and promoting the stability of the power grid and the new energy dissipation. The research contents include: 1. the mechanism of hot rolling process and the numerical calculation model of rolling parameters are analyzed. The rolling deformation and process parameters model, rolling force model and temperature model are emphatically studied. Through mechanism analysis and mathematical deduction, the numerical calculation between rolling load and rolling mill and the relative parameters of rolling parts is established. Set up the load numerical calculation model of rolling process and realize the simulation platform for the secondary load of slab hot rolling under the Matlab/Simulink environment. Based on this platform, the load parameterization analysis of the hot rolling process is carried out, and the relationship between the different process parameters and the rolling load and the sensitivity of the rolling load to the rolling load are determined to the minimum.2.. The optimization design method for the rolling regulation of medium and thick plates is aimed at the energy consumption of the rolling mill. The rolling load distribution method based on the rate controlled by the inter channel compression rate and the rolling process load model are combined to establish the optimal design model of the minimum energy consumption rolling regulation for medium and thick plates. The characteristics of the rolling production and the global searching ability and convergence speed of the medium and thick plate rolling are given. An improved particle swarm optimization (IPSO) algorithm is proposed to solve the model. The experimental results show that IPSO is applied to the rolling regulation optimization, the energy consumption is obviously reduced, the global search ability is strong and the convergence speed is fast. The comprehensive performance is superior to the genetic algorithm, the standard PSO and several commonly used improved algorithms. The force load reduction provides technical guidance, and can also be used to support the rolling process power load forecasting.3. to study the relationship between the hot rolling production control and demand response load scheduling and the optimal scheduling method. Under the price demand response environment, the vehicle path planning model based on the problem of hot rolling batch planning is proposed to minimize the cost of production power consumption. A two stage optimization method for hot rolling scheduling is developed for economic load scheduling. The first stage is to determine the rolling unit and production load through the hot rolling batch plan. The second stage is based on the load transfer redispatch under the time-sharing price, optimizing the processing order of the rolling unit and producing the idle waiting time to avoid the peak production. The results show that the proposed method can reduce the cost of production power consumption, and the optimal scheduling model and solving algorithm of slab hot rolling load based on price response are proposed by the response to electricity price in the power grid peak.4.. The problem of optimal scheduling results is difficult to achieve in the two stage optimization of hot rolling batch planning and demand response load adjustment. A multi-objective integrated optimization model for hot rolling production scheduling is established. A multi objective scheduling optimization algorithm based on NSGA-II is proposed to solve the penalty value between adjacent slab in the implementation of economic load scheduling to minimize the cost of electricity consumption. A multi objective optimization algorithm is proposed to optimize the Pareto optimal solution set and consider the preference of the target. In different production scenarios, three decision models are selected for the optimal solution of engineering. A variety of contrast methods are selected from different angles to the proposed method. The results show that the proposed model is effective and the performance of the algorithm is good.5. is oriented to the multi production line parallel production environment which is common in the batch production process, and the response of the price demand response is studied. A generalization model of multi machine parallel intermittent load scheduling. On the premise of line capacity satisfying production demand, in order to minimize the cost of production power consumption, the constraint relation between demand batch, line distribution and batch scheduling is established, which is expressed by integer variables and continuous time variables, and the nonlinear production constraints in the model are linear. The MILP model of the problem is constructed and the case is solved. The results are compared with the earliest completed time model. The results show that the model has better cost saving and load peak adjustment effect.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG335.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鞠立偉;秦超;吳鴻亮;何璞玉;于超;譚忠富;;計及多類型需求響應(yīng)的風(fēng)電消納隨機優(yōu)化調(diào)度模型[J];電網(wǎng)技術(shù);2015年07期
2 余貽鑫;劉艷麗;;智能電網(wǎng)的挑戰(zhàn)性問題[J];電力系統(tǒng)自動化;2015年02期
3 譚貌;段斌;蘇永新;何峰;;分時電價下面向經(jīng)濟負(fù)荷調(diào)度的熱軋批量計劃兩階段優(yōu)化[J];中南大學(xué)學(xué)報(自然科學(xué)版);2014年10期
4 王錫凡;肖云鵬;王秀麗;;新形勢下電力系統(tǒng)供需互動問題研究及分析[J];中國電機工程學(xué)報;2014年29期
5 曾丹;姚建國;楊勝春;王珂;周競;李亞平;;應(yīng)對風(fēng)電消納中基于安全約束的價格型需求響應(yīng)優(yōu)化調(diào)度建模[J];中國電機工程學(xué)報;2014年31期
6 楊勝春;劉建濤;姚建國;丁洪發(fā);王珂;李亞平;;多時間尺度協(xié)調(diào)的柔性負(fù)荷互動響應(yīng)調(diào)度模型與策略[J];中國電機工程學(xué)報;2014年22期
7 王再闖;袁鐵江;李永東;李建;葛來福;楊青斌;劉佳銘;劉沛漢;;基于儲能電站提高風(fēng)電消納能力的電源規(guī)劃研究[J];可再生能源;2014年07期
8 鄭忠;龍建宇;高小強;龔永民;呼萬哲;;鋼鐵企業(yè)以計劃調(diào)度為核心的生產(chǎn)運行控制技術(shù)現(xiàn)狀與展望[J];計算機集成制造系統(tǒng);2014年11期
9 譚貌;段斌;周嘯;李友芝;;基于改進(jìn)PSO的中厚板軋制規(guī)程能量優(yōu)化設(shè)計[J];中南大學(xué)學(xué)報(自然科學(xué)版);2014年05期
10 姚建國;楊勝春;王珂;曾丹;毛文博;耿建;;平衡風(fēng)功率波動的需求響應(yīng)調(diào)度框架與策略設(shè)計[J];電力系統(tǒng)自動化;2014年09期
,本文編號:1781433
本文鏈接:http://sikaile.net/guanlilunwen/wuliuguanlilunwen/1781433.html