天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究

發(fā)布時(shí)間:2016-12-14 06:44

  本文關(guān)鍵詞:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究,由筆耕文化傳播整理發(fā)布。


哈爾濱理T人學(xué)T學(xué)順I:學(xué)位論文;monitoringmethodfortheba;onlocalPCA【C】.Proceeding;andCyberneticsxi’an,2-5,;[13】張立君,劉愛倫.基于改進(jìn)主元分析方法的化;控制計(jì)算機(jī),2006,19(1):21.25.;【14】楊莉.基于主元分析的多變量統(tǒng)計(jì)的故障辨識(shí);2004,2(4):256—

哈爾濱理T人學(xué)T學(xué)順I:學(xué)位論文

monitoringmethodforthebatchprocessusingmultiple

onlocalPCA【C】.ProceedingsoftheSecondInternationalConferenceMachineLearning

andCyberneticsxi’an,2-5,2003.

[13】張立君,劉愛倫.基于改進(jìn)主元分析方法的化工過程的故障檢測(cè)【J】.工業(yè)

控制計(jì)算機(jī),2006,,19(1):21.25.

【14】楊莉.基于主元分析的多變量統(tǒng)計(jì)的故障辨識(shí)技術(shù)[J】.信息與電子工程,

2004,2(4):256—258.

[15】馮俊婷,王桂增,徐鐵.基于在主元分析的核電站主冷卻劑泵故障診斷

[J】.原子能科學(xué)技術(shù),2003,37(5):395.399.

【16]T惠文.偏最小二乘四l歸方法及其應(yīng)用[M】.國(guó)防工業(yè)出版社,1999.

【17]CHINGLH,RUSSELLEL,BRAATZR

usingFisherdiscriminantD.Faultdiagnosisinchemicalpartialleastprocessesanalysis,discriminant

aquares,andprincipalcomponentanalysis【J】.ChemometricsandIntelligentLaboratorySystems,2000,50:243-252.

【18]HIMESDM,STORERRH,GEORGAKISC.Determinationofthenumber

ofprincipal

thecomponentfordisturbancedetectionandisolation[C].InProc.ofAmericanControlConfi,pages1279-1283,Piscataway,NewJersey,l994.IEEEPress.

【19]PIOVOSOMJ,KOSANOVICHKA,PEARSONRK.Monitoringprocess

performanceinrealtime【C】.Inproc.OftheAmericanControlConf.,pages2359—2363,Piscataway,NewJersey,1992.IEEEPress.

[20]STORERWKuRH,GEORGAKISC.Disturbancedetectionand

andisolationbyIntelligentdynamicprincipalcomponentanalysis【J].Chemometrics

LaboratorySystems,1995,30:179—196.

[21]WOLD

【22]RAICHS,ESBENSENK,GELADIP.Principalcomponentsanalysisand[J】.ChemometricsandIntelligentLaboratorySystems,1987,2:37.A.StatisticalprocessmonitoringdisturbanceAC,CINAR

isolationinmultivariate

Conf.oncontinuousprocessesfCl.InProc.OftheIFACAdvancedControlofChemicalProcesses,Pages427—435,NewYork,1994.PergamonPress.

【23]TIPPING

『J1.ME,BISHOPCM.ProbalicisticPrincipalComponentAnalysisJ.R.Statist.SOC.B.,1999,61(3):611.122.

HM,MOUROTG,RAGOTJ.NonlinearPCAcombiningprincipal【24]FAOUZI

..66..

哈爾濱刪T人學(xué)T學(xué)壩fj學(xué)位論文。。。。剑。。。。。剑阶裕剑剑。。剑。剑剑。剑。剑剑。。剑恚桑。。。剑。剑。。剑剑!自g!E=jE。澹。。。。剑剑玻玻

curvesandRBF—Networksforprocess

onmonitoring[C】.Proceedingsofthe42naIEEE.Conference

2003.DecisionandControlMaui,Hawaii,USA,Dec.,

[25]GELADIP,KOWALSKIBR.Partialleast—squaresregression

【J】.Atutofial.AnalyticaChimicaActa,1986,185:1一17.

[26]HASTIETJ,STUETZLEW.Principalcurves[J】.JournalofAmerican

statisticalassociation,l989,84:502.516.

【271KRAMERMA.Nonlinearprincipalanalysisusingautoassociativeneural

networks[J】.AICHEJ,1991,37:233?243.

[28]DONGD,MAAVOYTJ.Nonlinear

andneuralprincipalanalysisbasedandChemicalonprincipalcurenetworks[J】.ComputersEngineering,1996,20(11:65-78.

[29]TanS.MavrovouniotisM

optimizingneuralL.Reducingdatadimensionalitythroughnetworksinputs[J】.AICHEJ,1995,41(6):1471—1480.[30]BAKSHI

processBR.MultiscalePCAwithapplicationtomultivariatestatisticalmonitoring[J】.AICHE,1998,44(7):1596?1610.

GJ,LIANG【3IICHENJ,QIANJX.Applicationofblindsourseanalysisto

multivariate

&Signalstatisticalprocessmonitoring[C】.IEEE.Int.conf.NeuralProcessing.Nanjing,China,December,14一17,2003.

E【32]KEMSLEYK.Discriminantanalysisofhigh-dimensionaldata:

Acomparisonofprincipalcomponentanalysisandpartialleastsaquaresdata

IntelligentLaboratoryreductionmethods[J】.Chemometricsand

1996,33:47.61.Systems,

forprocess

Annual【33]HASHIMOTOmonitoringI,KANOprincipalM,NAGAOcomponentK.Anewmethodusinganalysis【J】.InAICHE

Meeting,1999.Paper224.

【341LYMANPR.Plant-wideControlStructuresfortheTennesseeEastman

process,M.S.thesis,Lehigh

[35]RUSSELL

industrialEUniversity,1992.RD.FaultdetectioninL,CHIANGLH,BRAATZprocessesusingcanonicalvariateanalysisanddynamicprincipalcomponentanalysis【J】.Chemometrics

RA.TheuseandIntelligentLaboratorySystems,taxonomic2000,51:81—93.[36]FISHERofmultiplemeasurementsin

.67-

哈。簦。寅理T人學(xué)T學(xué)碩I:學(xué)位論文

problems.Ann.Eugenic【J】.1936,7:179—188.

【37]CINARA,TATARAE,DECICCOJ.Automatedpatientmonitoringand

integratingstatisticalandartificialdiagnosisassistancebyintelligencetools

[C】.Proc.of

[38]BISHOPtheAnnualConf.onEngineeringinMedicine&Biology,1999,2:700—710.C.NeuralNetworksforPatternRecognition【C】.ClarendonPress,

NewTork,1995.

[39]QINSJ,DUNIAR.Determiningthenumberofprincipalcomponentsforbest

ofProcessreconstruction[J】.Journal

【40]GELADIP.NotesonControl,2000,10(2):245—250.Squares(PLS)thehistoryandnatureofPartialLeast

modeling[J】.Chemometr,1988,2:231-246.

[4l】張菊秀.多傳感器信息融合技術(shù)和發(fā)展[J】.電子世界,2004,4:35.39.[42]ZHANG

[43]MARTINJ,YANGXH.MultivariateStatisticalProcessControl[C】.Beijing:ChemicalEIndustryPress,2000.B,MORRISAJ,ZHANGJ.Processperformancemonitoring

usingmultivariatestatisticalprocess

ApplIVol143,No2,March1996.control[C】.1EEProc-ControlTheory

[44]LIEFUCHT

FaultsUsingD,KrugerU,GeorgeW.ImprovedDiagnosisofSensorMultivariateStatistics[C】.Proceedingofthe2004AmericanControlConferenceBoston,MssachusettsJune30一July2,2004.

[45]KRESTA

monitoringJofV,MacgregorJprocessF,MARLINTE.MultivariatestatisticalJournalofperformance[J].Canadian

M.DetectionofgrosserrorsChemicalEngineering,1991,69:35—47.[46]TONGH,GROWECindatereconciliation

byprincipalcomponentanalysis[J】.AIChE.J,1995,41:1721-1732.

SJ.SubspaceApproachto[47]DUNIAR,QI-N

IdentificationMultidimensionalFaultandReconstruction[J】.AIChE.J,1998,44:1813—1831.

Q,SONGZH,LIP.FaultDetectionBehaviorand【48]WANGH

PerformanceAnalysisofPCA2basedProcessMonitoringMethods.IndlEnglChemlResl,2002,41:2455.2464.

【49]HELLAND

algorithmK,BERNTSENHE,BORGENOS,MARTENSH.Recursiveforpartialleastsquaresregression[J】.ChemometricsIntell.Lab.Syst.,1992,14:129.137..68.

哈爾濱胖T人學(xué)_r?qū)W顧fj學(xué)位論文

[50]NOMIKOSP,MACGREGORJF.Monitoringbatchprocessusing

multiwayprincipalcomponentanalysis[J】.AIChE.J,1994,40(8):1361一1375.

[51]YUANJQ,VANROLLEGHEMPA.RocllingLearning—Predicationofproduct

formationinbioprocesses[J】.JournalofBiotechnology,1999,69:47?62.[52]NOMIKOSP.MacgregorJF.Multiwaypartialleastsquaresinmonitoring

batchprocess[J】.Chem.Intell.Lab.Syst.,1995,30:97-115.

[53]PENTLANDA,MOGHADDAMB,STARNERT.View—basedandmodular

eigenspacesforfacerecognition[A】.ProcIEEEComputerSocietyConferenceOnComputerVisionandPatternRecognition[C].Seattle,1994,84-91.

[54]DONGD,MCAVOYTJ.Batchtrackingvianonlinearprincipalcomponent

analysisfJ】.AICHEJounnal1996,42(8):2199—2208.

[55]SCHLKOPFB,SMOLAA.MULLERK.Nonlinearcomponentanalysisasa

kerneleigenvalueproblem【J】.Neuralcomputation,1998,10(5):1299—1399.

【56]JOHNST,NELLOC.KernelMethodsforPatternAnalysis【M】.England:

CambridgeUniversityPress,2004.

[57]WISEBM,RICKERNL,VELKAMPDJ.Atheoreticalbasisforthe

useofprincipalcompontmodelsformonitoringmultivariateprocesses

【J】.ProcessControlandQUALITY,1990,1:41-51.

【58]SMOLAAJ.Learningwithkernels【D】.Berlin:TechnicalUniversityof

Berlin,1998.

[59]LeeJM,YooCK,LEEIB.Faultdetectionofbatchprocessesusing

multiwavkernelprincipalcomponentanalysis[J】.ComputersandChemicalEngineering,2004,28(9):1837—1840..69.

l喻爾濱理T人學(xué)T學(xué)順Ij學(xué)位論文

攻讀學(xué)位期間發(fā)表的學(xué)術(shù)論文

1呂寧,劉少波,于曉洋.基于主元空間統(tǒng)計(jì)的傳感器故障診斷與重構(gòu).自動(dòng)化技術(shù)與應(yīng)用,2008,(4).

 

 

下載地址:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究_圖文15.Doc

  【】

最新搜索

基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究_圖文

事業(yè)單位試題29

562016-2022年中國(guó)移動(dòng)運(yùn)營(yíng)市場(chǎng)現(xiàn)狀調(diào)研與發(fā)展前景趨

八下思品1-5課知識(shí)點(diǎn)

《感動(dòng)的事》作文集錦60

94我的教師生涯演講稿

來生做一個(gè)江南女孩_圖文06

4種苔蘚植物對(duì)干旱的適應(yīng)能力研究

充分利用課堂導(dǎo)入 激發(fā)物理學(xué)習(xí)興趣01

4種苔蘚植物對(duì)干旱的適應(yīng)能力研究03


  本文關(guān)鍵詞:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究,由筆耕文化傳播整理發(fā)布。



本文編號(hào):212324

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/tongjijuecelunwen/212324.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c5a30***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com