基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究
本文關(guān)鍵詞:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究,由筆耕文化傳播整理發(fā)布。
哈爾濱理T人學(xué)T學(xué)順I:學(xué)位論文;monitoringmethodfortheba;onlocalPCA【C】.Proceeding;andCyberneticsxi’an,2-5,;[13】張立君,劉愛倫.基于改進(jìn)主元分析方法的化;控制計(jì)算機(jī),2006,19(1):21.25.;【14】楊莉.基于主元分析的多變量統(tǒng)計(jì)的故障辨識(shí);2004,2(4):256—
哈爾濱理T人學(xué)T學(xué)順I:學(xué)位論文
monitoringmethodforthebatchprocessusingmultiple
onlocalPCA【C】.ProceedingsoftheSecondInternationalConferenceMachineLearning
andCyberneticsxi’an,2-5,2003.
[13】張立君,劉愛倫.基于改進(jìn)主元分析方法的化工過程的故障檢測(cè)【J】.工業(yè)
控制計(jì)算機(jī),2006,,19(1):21.25.
【14】楊莉.基于主元分析的多變量統(tǒng)計(jì)的故障辨識(shí)技術(shù)[J】.信息與電子工程,
2004,2(4):256—258.
[15】馮俊婷,王桂增,徐鐵.基于在主元分析的核電站主冷卻劑泵故障診斷
[J】.原子能科學(xué)技術(shù),2003,37(5):395.399.
【16]T惠文.偏最小二乘四l歸方法及其應(yīng)用[M】.國(guó)防工業(yè)出版社,1999.
【17]CHINGLH,RUSSELLEL,BRAATZR
usingFisherdiscriminantD.Faultdiagnosisinchemicalpartialleastprocessesanalysis,discriminant
aquares,andprincipalcomponentanalysis【J】.ChemometricsandIntelligentLaboratorySystems,2000,50:243-252.
【18]HIMESDM,STORERRH,GEORGAKISC.Determinationofthenumber
ofprincipal
thecomponentfordisturbancedetectionandisolation[C].InProc.ofAmericanControlConfi,pages1279-1283,Piscataway,NewJersey,l994.IEEEPress.
【19]PIOVOSOMJ,KOSANOVICHKA,PEARSONRK.Monitoringprocess
performanceinrealtime【C】.Inproc.OftheAmericanControlConf.,pages2359—2363,Piscataway,NewJersey,1992.IEEEPress.
[20]STORERWKuRH,GEORGAKISC.Disturbancedetectionand
andisolationbyIntelligentdynamicprincipalcomponentanalysis【J].Chemometrics
LaboratorySystems,1995,30:179—196.
[21]WOLD
【22]RAICHS,ESBENSENK,GELADIP.Principalcomponentsanalysisand[J】.ChemometricsandIntelligentLaboratorySystems,1987,2:37.A.StatisticalprocessmonitoringdisturbanceAC,CINAR
isolationinmultivariate
Conf.oncontinuousprocessesfCl.InProc.OftheIFACAdvancedControlofChemicalProcesses,Pages427—435,NewYork,1994.PergamonPress.
【23]TIPPING
『J1.ME,BISHOPCM.ProbalicisticPrincipalComponentAnalysisJ.R.Statist.SOC.B.,1999,61(3):611.122.
HM,MOUROTG,RAGOTJ.NonlinearPCAcombiningprincipal【24]FAOUZI
..66..
哈爾濱刪T人學(xué)T學(xué)壩fj學(xué)位論文。。。。剑。。。。。剑阶裕剑剑。。剑。剑剑。剑。剑剑。。剑恚桑。。。剑。剑。。剑剑!自g!E=jE。澹。。。。剑剑玻玻
curvesandRBF—Networksforprocess
onmonitoring[C】.Proceedingsofthe42naIEEE.Conference
2003.DecisionandControlMaui,Hawaii,USA,Dec.,
[25]GELADIP,KOWALSKIBR.Partialleast—squaresregression
【J】.Atutofial.AnalyticaChimicaActa,1986,185:1一17.
[26]HASTIETJ,STUETZLEW.Principalcurves[J】.JournalofAmerican
statisticalassociation,l989,84:502.516.
【271KRAMERMA.Nonlinearprincipalanalysisusingautoassociativeneural
networks[J】.AICHEJ,1991,37:233?243.
[28]DONGD,MAAVOYTJ.Nonlinear
andneuralprincipalanalysisbasedandChemicalonprincipalcurenetworks[J】.ComputersEngineering,1996,20(11:65-78.
[29]TanS.MavrovouniotisM
optimizingneuralL.Reducingdatadimensionalitythroughnetworksinputs[J】.AICHEJ,1995,41(6):1471—1480.[30]BAKSHI
processBR.MultiscalePCAwithapplicationtomultivariatestatisticalmonitoring[J】.AICHE,1998,44(7):1596?1610.
GJ,LIANG【3IICHENJ,QIANJX.Applicationofblindsourseanalysisto
multivariate
&Signalstatisticalprocessmonitoring[C】.IEEE.Int.conf.NeuralProcessing.Nanjing,China,December,14一17,2003.
E【32]KEMSLEYK.Discriminantanalysisofhigh-dimensionaldata:
Acomparisonofprincipalcomponentanalysisandpartialleastsaquaresdata
IntelligentLaboratoryreductionmethods[J】.Chemometricsand
1996,33:47.61.Systems,
forprocess
Annual【33]HASHIMOTOmonitoringI,KANOprincipalM,NAGAOcomponentK.Anewmethodusinganalysis【J】.InAICHE
Meeting,1999.Paper224.
【341LYMANPR.Plant-wideControlStructuresfortheTennesseeEastman
process,M.S.thesis,Lehigh
[35]RUSSELL
industrialEUniversity,1992.RD.FaultdetectioninL,CHIANGLH,BRAATZprocessesusingcanonicalvariateanalysisanddynamicprincipalcomponentanalysis【J】.Chemometrics
RA.TheuseandIntelligentLaboratorySystems,taxonomic2000,51:81—93.[36]FISHERofmultiplemeasurementsin
.67-
哈。簦。寅理T人學(xué)T學(xué)碩I:學(xué)位論文
A
problems.Ann.Eugenic【J】.1936,7:179—188.
【37]CINARA,TATARAE,DECICCOJ.Automatedpatientmonitoringand
integratingstatisticalandartificialdiagnosisassistancebyintelligencetools
[C】.Proc.of
[38]BISHOPtheAnnualConf.onEngineeringinMedicine&Biology,1999,2:700—710.C.NeuralNetworksforPatternRecognition【C】.ClarendonPress,
NewTork,1995.
[39]QINSJ,DUNIAR.Determiningthenumberofprincipalcomponentsforbest
ofProcessreconstruction[J】.Journal
【40]GELADIP.NotesonControl,2000,10(2):245—250.Squares(PLS)thehistoryandnatureofPartialLeast
modeling[J】.Chemometr,1988,2:231-246.
[4l】張菊秀.多傳感器信息融合技術(shù)和發(fā)展[J】.電子世界,2004,4:35.39.[42]ZHANG
[43]MARTINJ,YANGXH.MultivariateStatisticalProcessControl[C】.Beijing:ChemicalEIndustryPress,2000.B,MORRISAJ,ZHANGJ.Processperformancemonitoring
usingmultivariatestatisticalprocess
ApplIVol143,No2,March1996.control[C】.1EEProc-ControlTheory
[44]LIEFUCHT
FaultsUsingD,KrugerU,GeorgeW.ImprovedDiagnosisofSensorMultivariateStatistics[C】.Proceedingofthe2004AmericanControlConferenceBoston,MssachusettsJune30一July2,2004.
[45]KRESTA
monitoringJofV,MacgregorJprocessF,MARLINTE.MultivariatestatisticalJournalofperformance[J].Canadian
M.DetectionofgrosserrorsChemicalEngineering,1991,69:35—47.[46]TONGH,GROWECindatereconciliation
byprincipalcomponentanalysis[J】.AIChE.J,1995,41:1721-1732.
SJ.SubspaceApproachto[47]DUNIAR,QI-N
IdentificationMultidimensionalFaultandReconstruction[J】.AIChE.J,1998,44:1813—1831.
Q,SONGZH,LIP.FaultDetectionBehaviorand【48]WANGH
PerformanceAnalysisofPCA2basedProcessMonitoringMethods.IndlEnglChemlResl,2002,41:2455.2464.
【49]HELLAND
algorithmK,BERNTSENHE,BORGENOS,MARTENSH.Recursiveforpartialleastsquaresregression[J】.ChemometricsIntell.Lab.Syst.,1992,14:129.137..68.
哈爾濱胖T人學(xué)_r?qū)W顧fj學(xué)位論文
[50]NOMIKOSP,MACGREGORJF.Monitoringbatchprocessusing
multiwayprincipalcomponentanalysis[J】.AIChE.J,1994,40(8):1361一1375.
[51]YUANJQ,VANROLLEGHEMPA.RocllingLearning—Predicationofproduct
formationinbioprocesses[J】.JournalofBiotechnology,1999,69:47?62.[52]NOMIKOSP.MacgregorJF.Multiwaypartialleastsquaresinmonitoring
batchprocess[J】.Chem.Intell.Lab.Syst.,1995,30:97-115.
[53]PENTLANDA,MOGHADDAMB,STARNERT.View—basedandmodular
eigenspacesforfacerecognition[A】.ProcIEEEComputerSocietyConferenceOnComputerVisionandPatternRecognition[C].Seattle,1994,84-91.
[54]DONGD,MCAVOYTJ.Batchtrackingvianonlinearprincipalcomponent
analysisfJ】.AICHEJounnal1996,42(8):2199—2208.
[55]SCHLKOPFB,SMOLAA.MULLERK.Nonlinearcomponentanalysisasa
kerneleigenvalueproblem【J】.Neuralcomputation,1998,10(5):1299—1399.
【56]JOHNST,NELLOC.KernelMethodsforPatternAnalysis【M】.England:
CambridgeUniversityPress,2004.
[57]WISEBM,RICKERNL,VELKAMPDJ.Atheoreticalbasisforthe
useofprincipalcompontmodelsformonitoringmultivariateprocesses
【J】.ProcessControlandQUALITY,1990,1:41-51.
【58]SMOLAAJ.Learningwithkernels【D】.Berlin:TechnicalUniversityof
Berlin,1998.
[59]LeeJM,YooCK,LEEIB.Faultdetectionofbatchprocessesusing
multiwavkernelprincipalcomponentanalysis[J】.ComputersandChemicalEngineering,2004,28(9):1837—1840..69.
l喻爾濱理T人學(xué)T學(xué)順Ij學(xué)位論文
攻讀學(xué)位期間發(fā)表的學(xué)術(shù)論文
1呂寧,劉少波,于曉洋.基于主元空間統(tǒng)計(jì)的傳感器故障診斷與重構(gòu).自動(dòng)化技術(shù)與應(yīng)用,2008,(4).
下載地址:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究_圖文15.Doc
【】最新搜索
基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究_圖文
事業(yè)單位試題29
562016-2022年中國(guó)移動(dòng)運(yùn)營(yíng)市場(chǎng)現(xiàn)狀調(diào)研與發(fā)展前景趨
八下思品1-5課知識(shí)點(diǎn)
《感動(dòng)的事》作文集錦60
94我的教師生涯演講稿
來生做一個(gè)江南女孩_圖文06
4種苔蘚植物對(duì)干旱的適應(yīng)能力研究
充分利用課堂導(dǎo)入 激發(fā)物理學(xué)習(xí)興趣01
4種苔蘚植物對(duì)干旱的適應(yīng)能力研究03
本文關(guān)鍵詞:基于多元統(tǒng)計(jì)理論的工業(yè)故障檢測(cè)與診斷研究,由筆耕文化傳播整理發(fā)布。
本文編號(hào):212324
本文鏈接:http://sikaile.net/guanlilunwen/tongjijuecelunwen/212324.html