基于四參數(shù)區(qū)間直覺(jué)模糊集的多準(zhǔn)則決策方法研究
本文關(guān)鍵詞: 四參數(shù)區(qū)間直覺(jué)模糊數(shù) 集結(jié)算子 心態(tài)指標(biāo)函數(shù) 多準(zhǔn)則決策 出處:《中南大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
【摘要】:模糊多準(zhǔn)則決策是不確定性多準(zhǔn)則決策中一個(gè)十分重要的研究領(lǐng)域。在經(jīng)濟(jì)生活中,由于人類認(rèn)識(shí)客觀世界的模糊性以及認(rèn)識(shí)對(duì)象的不確定性,人們?cè)谧鰶Q策時(shí)常常會(huì)遇到?jīng)Q策信息不全的情形,此時(shí)決策者給出的準(zhǔn)則值通常采用經(jīng)典的模糊數(shù),而人們對(duì)事物認(rèn)識(shí)和判斷往往采用依靠自己的直覺(jué),表示對(duì)事物支持和反對(duì)的程度,從而產(chǎn)生了直覺(jué)模糊數(shù)。然而,直覺(jué)模糊數(shù)并不能準(zhǔn)確描述物質(zhì)的模糊本質(zhì),從而利用區(qū)間數(shù)來(lái)描述直覺(jué)中的隸屬度和非隸屬度,更能體現(xiàn)事物的本質(zhì),因而區(qū)間直覺(jué)以及模糊數(shù)直覺(jué)模糊數(shù)應(yīng)運(yùn)而生,并將其應(yīng)用在信息不確定或不完全確定的模糊多準(zhǔn)則決策中。 但是,在現(xiàn)實(shí)生活中,隸屬度和非隸屬度區(qū)間中的取值機(jī)會(huì)函數(shù)往往不是均勻分布,而是非線性的,因而在此基礎(chǔ)上提出四參數(shù)區(qū)間直覺(jué)模糊數(shù),具有實(shí)際意義。目前,有關(guān)四參數(shù)區(qū)間直覺(jué)模糊數(shù)在多準(zhǔn)則決策中的研究不多,因此對(duì)準(zhǔn)則值為四參數(shù)區(qū)間直覺(jué)模糊數(shù)的多準(zhǔn)則決策問(wèn)題進(jìn)行研究具有重要意義。 本文在現(xiàn)有前人的研究成果基礎(chǔ)上,分析了直覺(jué)和區(qū)間直覺(jué)模糊數(shù)的不足和缺點(diǎn),針對(duì)信息完全和不完全,準(zhǔn)則值為四參數(shù)區(qū)間直覺(jué)模糊多準(zhǔn)則決策問(wèn)題進(jìn)行了深入的研究,建立了相應(yīng)的決策模型,并求解。本文工作成果如下: (1)提出了四參數(shù)區(qū)間數(shù)及四參數(shù)區(qū)間直覺(jué)模糊數(shù)的概念,擴(kuò)展了參數(shù)區(qū)間以及參數(shù)區(qū)間直覺(jué)模糊數(shù)的基本性質(zhì)以及運(yùn)算規(guī)則,豐富了直覺(jué)模糊數(shù)的理論。 (2)給出了FPIIFN-WAA算子及其性質(zhì),FPIIFN-WGA算子性質(zhì),FPIIFN-OWA算子及其性質(zhì),I-FPIIFN-OWA算子及其性質(zhì),并給出了他們的運(yùn)算性質(zhì)。針對(duì)各種相關(guān)的決策情況,提出了基于集結(jié)算子的四參數(shù)區(qū)間直覺(jué)模糊多準(zhǔn)則決策方法。 (3)提出了四參數(shù)區(qū)間直覺(jué)模糊數(shù)的記分函數(shù)以及精確函數(shù),給出了一種權(quán)重為四參數(shù)區(qū)間數(shù)準(zhǔn)則值為四參數(shù)區(qū)間直覺(jué)模糊數(shù)的多準(zhǔn)則決策方法;跉W式距離,以及風(fēng)險(xiǎn)偏好指標(biāo),建立線性規(guī)劃模型求解最優(yōu)組合權(quán)重,給出了一種基于F-TOPSIS的四參數(shù)區(qū)間直覺(jué)模糊多準(zhǔn)則決策方法。 (4)提出了四參數(shù)區(qū)間直覺(jué)模糊數(shù)的心態(tài)指標(biāo)記分函數(shù)并運(yùn)用心態(tài)指標(biāo)記分函數(shù)進(jìn)行四參數(shù)區(qū)間直覺(jué)模糊數(shù)的大小排序。同時(shí)提出了一種心態(tài)指標(biāo)函數(shù)的四參數(shù)區(qū)間直覺(jué)多準(zhǔn)則決策方法,并將此方法應(yīng)用到實(shí)際的房地產(chǎn)評(píng)估決策中。在網(wǎng)絡(luò)優(yōu)化SEO中,運(yùn)用前文提出的三種排序方法進(jìn)行對(duì)比,驗(yàn)證了結(jié)果的一致性和合理性。本文通過(guò)相應(yīng)的實(shí)例進(jìn)行分析,說(shuō)明了以上所提出的方法合理性和科學(xué)性,從而為人們認(rèn)識(shí)模糊世界提供了一個(gè)有效的方法和途徑。
[Abstract]:Fuzzy multi-criteria decision making is a very important research field in uncertain multi-criteria decision-making. In economic life, due to the fuzziness of human understanding of the objective world and the uncertainty of the object of understanding. When people make a decision, they often encounter the situation of incomplete decision information. At this time, the criteria given by the decision maker usually use the classical fuzzy number, and people often rely on their own intuition to know and judge things. The degree of support and opposition to things, which results in intuitionistic fuzzy numbers. However, intuitionistic fuzzy numbers cannot accurately describe the fuzzy nature of matter. Thus using interval numbers to describe the degree of membership and non-membership in intuition can reflect the essence of things more. Therefore interval intuition and fuzzy number intuitionistic fuzzy numbers emerge as the times require. It is applied to fuzzy multi-criteria decision making with uncertain or incomplete information. However, in real life, the opportunity function of membership and non-membership is not uniform distribution, but nonlinear, so on the basis of this, a four-parameter interval intuitionistic fuzzy number is proposed. At present, there are few researches on the interval intuitionistic fuzzy number of four parameters in multi-criteria decision making. Therefore, it is of great significance to study the multi-criteria decision making problem in which the criterion value is an interval intuitionistic fuzzy number with four parameters. Based on the existing research results, this paper analyzes the shortcomings and shortcomings of intuitionistic and interval intuitionistic fuzzy numbers, aiming at the complete and incomplete information. The criterion value is the four-parameter interval intuitionistic fuzzy multi-criteria decision making problem. The corresponding decision model is established and solved. The results of this paper are as follows: 1) the concepts of four-parameter interval number and four-parameter interval intuitionistic fuzzy number are proposed, and the basic properties and operation rules of parameter interval and parameter interval intuitionistic fuzzy number are extended. It enriches the theory of intuitionistic fuzzy numbers. The properties of FPIIFN-WGA operator and FPIIFN-OWA operator are given. I-FPIIFN-OWA operators and their properties are given. Based on aggregation operator, a four parameter interval intuitionistic fuzzy multiple criteria decision making method is proposed. A scoring function and an exact function for interval intuitionistic fuzzy numbers with four parameters are proposed. In this paper, a multi-criteria decision method with the weight of four-parameter interval number criterion and four-parameter interval intuitionistic fuzzy number is presented. Based on Euclidean distance and risk preference index, a linear programming model is established to solve the optimal combination weight. A four parameter interval intuitionistic fuzzy multiple criteria decision making method based on F-TOPSIS is presented. 4). In this paper, the mental index scoring function of the four parameter interval intuitionistic fuzzy number is put forward, and the size order of the four parameter interval intuitionistic fuzzy number is carried out by using the mental index score function. At the same time, a four parameter interval of the mental state index function is proposed. Intuitionistic multi-criteria decision making method. And this method is applied to the real estate evaluation decision. In the network optimization SEO, the three sort methods proposed above are compared. The consistency and rationality of the results are verified. Through the analysis of the corresponding examples, the rationality and scientificity of the methods proposed above are explained. Thus, it provides an effective way for people to understand the fuzzy world.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:C934;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 樊治平,尤天慧,張堯;屬性權(quán)重信息不完全的區(qū)間數(shù)多屬性決策方法[J];東北大學(xué)學(xué)報(bào);2005年08期
2 徐澤水,達(dá)慶利;區(qū)間型多屬性決策的一種新方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
3 戴躍強(qiáng);徐澤水;達(dá)慶利;;基于不同直覺(jué)偏好結(jié)構(gòu)的多屬性決策方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
4 胡啟洲;張衛(wèi)華;于莉;;三參數(shù)區(qū)間數(shù)研究及其在決策分析中的應(yīng)用[J];中國(guó)工程科學(xué);2007年03期
5 劉清君,鄒小梅;區(qū)間數(shù)層次分析方法及其應(yīng)用[J];系統(tǒng)工程;2005年05期
6 衛(wèi)貴武;;I-FIFOWA算子及其在群決策中的應(yīng)用[J];管理學(xué)報(bào);2010年06期
7 李凡,盧安,蔡立晶;基于Vague集的多目標(biāo)模糊決策方法[J];華中科技大學(xué)學(xué)報(bào);2001年07期
8 王毅;雷英杰;;基于包含度的直覺(jué)模糊相似度量方法[J];計(jì)算機(jī)工程與應(yīng)用;2008年11期
9 夏梅梅;魏翠萍;;對(duì)方案有偏好的直覺(jué)模糊多屬性決策方法[J];計(jì)算機(jī)工程與應(yīng)用;2009年02期
10 李凡;饒勇;;基于Vague集的加權(quán)多目標(biāo)模糊決策方法[J];計(jì)算機(jī)科學(xué);2001年07期
,本文編號(hào):1467608
本文鏈接:http://sikaile.net/guanlilunwen/tongjijuecelunwen/1467608.html