基于最小二乘支持向量機(jī)的北京市肉類需求量預(yù)測研究
[Abstract]:As a large city with a permanent population of 19.21 million, Beijing has a huge demand for meat every year. In 2010, the demand for meat in Beijing was 547086 tons, including 388542 tons for pigs, 88080 tons for beef and 70464 tons for beef and mutton. As an indispensable food in people's daily life, meat and its products play an important role in protecting people's livelihood. In order to ensure the supply of meat and its products and reduce the waste of resources, it is necessary to forecast the demand of meat and its products effectively. In this paper, the selection of forecasting model of meat demand and the determination of key influencing factors are studied, and the forecast model is used to predict the demand of meat in Beijing. The main contents are as follows: first of all, the common demand forecasting methods at home and abroad are compared. Traditional prediction methods: regression forecasting, time series prediction, and intelligent methods: artificial neural network prediction method, least squares support vector machine prediction method, are analyzed, and the advantages and disadvantages are compared. The least square support vector machine (LS-SVM) model is used to predict the meat demand in Beijing. Secondly, select the key factors that affect the meat demand in Beijing. The change trend of meat demand and the consumption structure of meat food in Beijing are analyzed, and the main forecast target is determined. All the factors affecting meat demand in Beijing are summarized. According to the correlation analysis and the availability of data, the population size, the annual cash income per person and the retail price index of meat food are selected as the key factors. Finally, the least square support vector machine (LS-SVM) model is used to predict the meat demand in Beijing. The results obtained are compared with the real values, the multivariate regression method and the BP neural network model. It is proved that this model has a high prediction accuracy. And the least square support vector machine is used to forecast the meat demand in Beijing in 2015 and 2020. The results showed that the demand for pork would increase greatly in the next ten years, and the demand for beef and mutton would decrease. The research work in this paper can provide more accurate data of meat demand for the development planning of meat food enterprises in Beijing and cold chain logistics system planning in Beijing, and further research on the selection and calculation of meat demand forecasting models. Reference and reference are provided.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:F426.82;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張?zhí)?1956—1978年北京居民家庭的食品消費(fèi)生活[J];當(dāng)代中國史研究;2001年03期
2 周孫鋒;張文廣;;西安市公交客運(yùn)量的回歸分析預(yù)測研究[J];廣東交通職業(yè)技術(shù)學(xué)院學(xué)報;2011年04期
3 王德華;;我國城鎮(zhèn)居民豬肉需求量的計量經(jīng)濟(jì)學(xué)模型[J];硅谷;2008年09期
4 陳濤;楊凱凡;楊曉;;基于支持向量機(jī)的石油需求預(yù)測[J];河南科學(xué);2008年12期
5 岳宏;霍靈光;張越杰;;中國城鄉(xiāng)居民牛肉需求量預(yù)測分析[J];吉林農(nóng)業(yè)大學(xué)學(xué)報;2012年01期
6 林樹文;劉榮章;陳志峰;;福州市肉類產(chǎn)品的消費(fèi)需求分析及預(yù)測[J];江西農(nóng)業(yè)學(xué)報;2010年10期
7 徐瑜青,張云靜;西部大開發(fā)農(nóng)產(chǎn)品流通問題研究——四川省豬肉需求計量經(jīng)濟(jì)模型分析[J];農(nóng)村經(jīng)濟(jì);2003年06期
8 李振唐,王誼鵑,彭鷹;我國肉類產(chǎn)品生產(chǎn)消費(fèi)能力分析[J];農(nóng)業(yè)技術(shù)經(jīng)濟(jì);2005年03期
9 劉秀梅,秦富;我國城鄉(xiāng)居民動物性食物消費(fèi)研究[J];農(nóng)業(yè)技術(shù)經(jīng)濟(jì);2005年03期
10 王祖力;王濟(jì)民;;我國畜產(chǎn)品消費(fèi)變動特征與未來需求預(yù)測[J];農(nóng)業(yè)展望;2011年08期
相關(guān)會議論文 前1條
1 黃元生;鄭燕;乞建勛;;基于最小二乘的支持向量機(jī)在電力需求預(yù)測中的應(yīng)用[A];中國優(yōu)選法統(tǒng)籌法與經(jīng)濟(jì)數(shù)學(xué)研究會第七屆全國會員代表大會暨第七屆中國管理科學(xué)學(xué)術(shù)年會論文集[C];2005年
相關(guān)博士學(xué)位論文 前2條
1 楊奎河;短期電力負(fù)荷的智能化預(yù)測方法研究[D];西安電子科技大學(xué);2004年
2 包哲靜;支持向量機(jī)在智能建模和模型預(yù)測控制中的應(yīng)用[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 劉丹;天然氣消費(fèi)需求量預(yù)測方法改進(jìn)研究[D];重慶大學(xué);2006年
2 楊立成;基于最小二乘支持向量機(jī)的短期電力負(fù)荷預(yù)測方法研究[D];廣西大學(xué);2008年
3 朱杰;基于最小二乘支持向量機(jī)的傳染病預(yù)測與研究[D];蘇州大學(xué);2009年
4 冷北雪;基于支持向量機(jī)的電力系統(tǒng)短期負(fù)荷預(yù)測[D];西南交通大學(xué);2010年
,本文編號:2302787
本文鏈接:http://sikaile.net/guanlilunwen/shengchanguanlilunwen/2302787.html