我國制造業(yè)上市公司信用風(fēng)險(xiǎn)的測度研究
本文選題:信用風(fēng)險(xiǎn)測度 切入點(diǎn):判別分忻 出處:《東華大學(xué)》2013年碩士論文
【摘要】:自2008年國際金融危機(jī)爆發(fā)以來,世界經(jīng)濟(jì)經(jīng)歷了急劇地動(dòng)蕩與衰退地考驗(yàn),現(xiàn)在又進(jìn)入到艱難復(fù)蘇的后國際金融危機(jī)時(shí)期。受經(jīng)濟(jì)周期下行和國家產(chǎn)業(yè)政策調(diào)整等因素的影響,國內(nèi)制造業(yè)、地產(chǎn)、船舶、鋼鐵貿(mào)易等被列入了高風(fēng)險(xiǎn)行業(yè)。其中,制造業(yè)作為國民經(jīng)濟(jì)的基礎(chǔ),是經(jīng)濟(jì)指數(shù)良好運(yùn)行強(qiáng)有力地支撐。然而,由于我國近期宏觀經(jīng)濟(jì)走勢趨緩、出口疲軟、用工成本上升、訂單外流等因素的影響,使得我國制造業(yè)發(fā)展形勢很不樂觀,日常運(yùn)營面臨重大挑戰(zhàn),信用風(fēng)險(xiǎn)開始集中暴露。因此,如何有效測度制造業(yè)上市公司的信用風(fēng)險(xiǎn)亟待解決;诖,文章采用定性和定量的方法對(duì)我國制造業(yè)上市公司信用風(fēng)險(xiǎn)的測度進(jìn)行了理論分析和實(shí)證研究。 首先,文章對(duì)國內(nèi)外信用風(fēng)險(xiǎn)文獻(xiàn)資料,按照信用風(fēng)險(xiǎn)測度的指標(biāo)模型和非指標(biāo)模型這一標(biāo)準(zhǔn)進(jìn)行了梳理與學(xué)習(xí),并從研究對(duì)象、研究視角、研究方法三個(gè)方面總結(jié)歸納了學(xué)者們的研究成果對(duì)作者所研究課題的啟發(fā)。 其次,文章對(duì)信用風(fēng)險(xiǎn)的理論知識(shí)進(jìn)行了簡要說明,并對(duì)信用風(fēng)險(xiǎn)的測度模型按照指標(biāo)模型和非指標(biāo)模型這一標(biāo)準(zhǔn)進(jìn)行了解析,以加深對(duì)模型的認(rèn)知,為后續(xù)信用風(fēng)險(xiǎn)測度模型的選擇與運(yùn)用奠定理論基礎(chǔ)。同時(shí),文章也對(duì)我國制造業(yè)上市公司信用風(fēng)險(xiǎn)的成因及特點(diǎn)進(jìn)行了分析。 通過上述信用風(fēng)險(xiǎn)文獻(xiàn)綜述、理論知識(shí)以及各種模型的解析,我們發(fā)現(xiàn):現(xiàn)有的針對(duì)國內(nèi)上市公司信用風(fēng)險(xiǎn)的測度分別從會(huì)計(jì)報(bào)表截面數(shù)據(jù)和資本市場時(shí)間序列數(shù)據(jù)兩個(gè)單方面因素展開研究。而公司信用風(fēng)險(xiǎn)發(fā)生與否是一個(gè)長期積累的過程,且會(huì)計(jì)報(bào)表截面數(shù)據(jù)是信用主體的歷史記載,具有“向后看”的特性;資本市場時(shí)間序列數(shù)據(jù)作為先行指標(biāo),具有“前瞻性”。為此,如果將兩者有效結(jié)合,使其較為全面地涵蓋公司未來違約的預(yù)測信息,那么其整體的預(yù)測效果是否比從單一方面考慮會(huì)更好是文章研究的口的所在。 因此,文章結(jié)合實(shí)際情況以及相關(guān)模型的適用性,先運(yùn)用財(cái)務(wù)比率指標(biāo)作為會(huì)計(jì)報(bào)表截面數(shù)據(jù),基于主成分和判別分析對(duì)制造業(yè)上市公司的信用風(fēng)險(xiǎn)進(jìn)行初步測度;接著運(yùn)用股票價(jià)格時(shí)間序列數(shù)據(jù)作為資本市場數(shù)據(jù),基于KMV模型計(jì)算違約距離DD,然后將財(cái)務(wù)比率指標(biāo)主成分因子與違約距離DD共同納入到Logistic模型中,實(shí)現(xiàn)會(huì)計(jì)報(bào)表截面數(shù)據(jù)和資本市場時(shí)間序列數(shù)據(jù)的有效結(jié)合,以提高對(duì)我國制造業(yè)上市公司信用風(fēng)險(xiǎn)的測度能力。 實(shí)證研究結(jié)果表明,會(huì)計(jì)報(bào)表截面數(shù)據(jù)和資本市場時(shí)間序列數(shù)據(jù)有效結(jié)合后,使得Logistic模型整體預(yù)測準(zhǔn)確率達(dá)到85%,相比僅有財(cái)務(wù)比率指標(biāo)數(shù)據(jù)的分析模型,其整體預(yù)測準(zhǔn)確率提高了5%,充分說明財(cái)務(wù)比率指標(biāo)與違約距離DD的結(jié)合對(duì)模型的預(yù)測是有效的。至此,文章從會(huì)計(jì)報(bào)表截面數(shù)據(jù)以及資本市場時(shí)間序列數(shù)據(jù)兩個(gè)方面,通過運(yùn)用不同模型和方法的優(yōu)勢互補(bǔ)性,試探性地提出我國制造業(yè)上市公司信用風(fēng)險(xiǎn)兩階段測度體系,從而更有效地對(duì)制造業(yè)的信用風(fēng)險(xiǎn)進(jìn)行測度,并為其有效管理提供初步的理論依據(jù)。
[Abstract]:Since 2008 the international financial crisis, the world economy has experienced turbulence and recession test, and now into the difficult recovery after the international financial crisis. Affected by the downward economic cycle and the national industrial policy adjustments and other factors, the domestic real estate industry, shipbuilding, steel trade, etc. are included in the high risk industry the manufacturing industry is the foundation of the national economy, the economic index is good operation of the strong support. However, due to China's recent macroeconomic trends slowed, weak exports, rising labor costs, affect the outflow of orders and other factors, the development of China's manufacturing industry is very optimistic about the situation, the daily operation is facing major challenges, credit risk began to focus on the exposure. Therefore, how to effectively measure the credit risk of Listed Companies in the manufacturing industry to be solved. Based on this, the dissertation uses the method of qualitative and quantitative of China's manufacturing industry. The measure of the credit risk of the city company has been analyzed theoretically and empirically.
First of all, the article of domestic and international credit risk literature, according to the index model of credit risk measurement and non index model which is a standard of the carding and study, and from the research object, research perspective, research methods inspired three aspects summarizes the research achievements of scholars research on them.
Secondly, the credit risk of the theoretical knowledge of this paper are briefly described, and the measure model of credit risk in accordance with the index model and non index model of this standard are analyzed, in order to deepen the cognition model, lay the theoretical foundation for the follow-up and use of credit risk measurement models. At the same time, the article also on credit risk China's manufacturing industry listed companies causes and characteristics are analyzed.
The credit risk through literature review, theoretical knowledge and analytical models, we find that the existing credit risk of domestic listed companies to measure and carries out the research on accounting statements section data and time series data of capital market and two unilateral factors. The company credit risk occurs or not is a long-term process of accumulation, and accounting report section data is the main credit history, has the characteristic of "look back"; the capital market time series data as a leading indicator, are "forward-looking". Therefore, if the effective combination of the two, the forecast information comprehensively covers the company's future defaults, then whether the overall prediction results than considering one aspect of the paper is to be better in place.
Therefore, based on the actual situation and the applicability of the model, we use financial ratios as the accounting statements section data, principal component analysis and discriminant analysis for manufacturing the credit risk of listed companies based on the preliminary measure; then use the stock price time series data as the capital market data, the default distance calculation model based on KMV and DD. The financial ratio index of principal components and DD into the distance to default to the Logistic model, realize the effective combination of the accounting statements section data and time series data of the capital market, to improve the ability to measure the credit risk of China's Listed Companies in the manufacturing industry.
The empirical results show that the effective combination of the accounting statements section data and time series data of capital market, makes the Logistic model the overall prediction accuracy reached 85%, compared with the model only financial ratio index data, the overall prediction accuracy is increased by 5%, and shows the default ratios from DD to forecast model is combined with effective. Thus, this article from the two aspects of accounting statements and the section data of capital market time series data, through the complementary advantages of the use of different models and methods, we put forward some of China's manufacturing industry listed companies' credit risk measurement system of two stages, so as to more effectively to the manufacturing industry to measure credit risk, and to provide the theoretical basis for its effective management.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F425;F832.51;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李鈺;朱衛(wèi)兵;;KMV模型在我國的實(shí)務(wù)化[J];財(cái)經(jīng)科學(xué);2009年03期
2 李興法;王慶石;;基于CreditMetrics模型的商業(yè)銀行信用風(fēng)險(xiǎn)應(yīng)用研究[J];財(cái)經(jīng)問題研究;2006年12期
3 于立勇,詹捷輝;基于Logistic回歸分析的違約概率預(yù)測研究[J];財(cái)經(jīng)研究;2004年09期
4 趙吉紅;謝守紅;;我國制造業(yè)上市公司信用風(fēng)險(xiǎn)度量:基于KMV模型[J];財(cái)會(huì)月刊;2011年30期
5 張玲,楊貞柿,陳收;KMV模型在上市公司信用風(fēng)險(xiǎn)評(píng)價(jià)中的應(yīng)用研究[J];系統(tǒng)工程;2004年11期
6 李建華;韓崗;韓曉普;;基于Credit Portfolio View的信用風(fēng)險(xiǎn)度量模型研究[J];工業(yè)技術(shù)經(jīng)濟(jì);2008年03期
7 程鵬,吳沖鋒,李為冰;信用風(fēng)險(xiǎn)度量和管理方法研究[J];管理工程學(xué)報(bào);2002年01期
8 孫小琰;沈悅;羅璐琦;;基于KMV模型的我國上市公司價(jià)值評(píng)估實(shí)證研究[J];管理工程學(xué)報(bào);2008年01期
9 劉迎春;;基于Logistic回歸的中國上市公司信用風(fēng)險(xiǎn)度量研究[J];黑龍江對(duì)外經(jīng)貿(mào);2010年11期
10 李萌;Logit模型在商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估中的應(yīng)用研究[J];管理科學(xué);2005年02期
相關(guān)博士學(xué)位論文 前1條
1 張瑛;新興技術(shù)企業(yè)信用風(fēng)險(xiǎn)評(píng)估方法研究[D];電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 萬晏伶;我國制造業(yè)上市公司信用風(fēng)險(xiǎn)評(píng)價(jià)研究[D];重慶大學(xué);2011年
2 趙吉紅;基于KMV模型制造業(yè)上市公司信用風(fēng)險(xiǎn)研究[D];江南大學(xué);2012年
3 馮蔚蔚;我國商業(yè)銀行企業(yè)客戶群信用風(fēng)險(xiǎn)的實(shí)證研究[D];浙江大學(xué);2006年
4 賀斌斌;我國上市公司信用風(fēng)險(xiǎn)計(jì)量模型研究[D];暨南大學(xué);2007年
,本文編號(hào):1715148
本文鏈接:http://sikaile.net/guanlilunwen/shengchanguanlilunwen/1715148.html