基于金屬納米復(fù)合材料修飾電極陣列的黃酒酒齡、品牌和地域鑒別
[Abstract]:Yellow rice wine has abundant nutrition, broad market prospects and enjoys the reputation of "national wine". However, due to the lack of quality evaluation methods, illegal behaviors such as false declaration of wine age, labeling of well-known brands and faking geographical indications as inferior products often occur, which seriously infringe the interests of regular manufacturers and consumers. Surface can immobilize nano-materials and polymers with good chemical properties, overcome the weakness and low sensitivity of single material modified electrode and bare electrode. In recent years, it has been used in wine age, region and brand identification. The identification of authenticity and falsity of yellow rice wine quality and the identification and prediction of different wine ages, brands and regions have been successfully realized by pattern recognition method, thus providing a new and reliable solution for purifying the yellow rice wine market and safeguarding the interests of consumers and regular producers. U/GCE, PABSA/Au/GCE and PASP/Pt/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict six kinds of Shaoxing Guyuelongshan yellow wine aged 3 years, 5 years, 8 years, 10 years, 15 years and 20 years. PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE polymer/metal nanocomposites modified electrodes were prepared by cyclic voltammetry (CV) and current-time method (i-t) with acid (amino acid, astringent taste) and glucose (sugar, sweet taste). The electrode was modified by PACBK/Au/GCE, PABSA/Au/GCE and PASP/Pt/GCE. Under the conditions of optimizing pH, sweeping rate and buffer concentration, the three flavoring substances were detected. Quantitative determination in a series of concentration gradient solutions showed that the content of the three substances in yellow rice wine was much higher than the detection limit by comparing the detection limit of the three substances on the electrode and the content in yellow rice wine. On this basis, the complex frequency multi-potential step method was applied to the electrode array as excitation signal in six kinds of rice wine samples. The response current signal curve and the area around the time axis were selected as eigenvalues, combined with principal component analysis (PCA), partial retention projection (LPP), linear discriminant analysis (LDA) and support vector machine (LSSVM, LIBSVM). Pattern recognition method was used to distinguish and predict the age of yellow rice wine. Among the three models, PCA, LPP and LDA, LDA was the best. In the two-dimensional and three-dimensional charts, six kinds of yellow rice wine could be separated obviously; LSSVM and LIBSVM were better than LSSVM in predicting the age of yellow rice wine, especially the mean square deviation was smaller. BK/Au/GCE, PABSA/Au/GCE, PGA/Cu/GCE and PGA/Cu/GCE modified glassy carbon electrode arrays were successfully used to distinguish and predict three kinds of Shaoxing rice wine from three kinds of Guyue Longshan, three kinds of Tapai and a total of seven brands of Jishan. In this part, three flavoring substances, vitamin C (vitamin, acid), tyrosine (amino acid), with relatively large content difference among the different brands of rice wine were selected. Polymer/metal nanocomposites modified electrodes PACBK/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE were prepared by cyclic voltammetry and gallic acid (phenols, bitters) respectively. Linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) were used to optimize pH, sweep rate, enrichment potential and time. The quantitative determination of three flavoring substances in a series of concentration gradients was realized by DPV. The detection limits of vitamin C, tyrosine and gallic acid were compared with the actual contents of three flavoring substances in yellow rice wine. The results showed that the actual contents were far greater than the detection limits, indicating that the brand of yellow rice wine was based on modified electrode array. The response current signal curve was obtained by applying square wave and trapezoidal wave multi-potential step method to the electrode array in seven brands of yellow rice wine. The current curve and the area around the time axis were selected as the eigenvalues, combined with PCA, LPP, LDA, LIBSVM, ELM (Extreme Learning Machine) and BPNN (BP Neural Network) etc. The discriminant model showed that there were three kinds of tower rice wine with too small spacing among PCA, LPP and LDA, and the ELM discriminant effect was not ideal, but the LIBSVM model had better effect. The correct discriminant rate of training set and test set was 100% and 99.05% respectively. SVM has a good prediction effect, but BPNN has a good prediction accuracy rate of 97.14%. (3) Using self-made SMWCNT / Au / GCE, PABSA / Au / GCE and PGA / Cu / GCE modified glassy carbon electrode arrays, we have successfully realized five regions: Jiangsu Suanyang (Zhenjiang), Qingdao Jimo (Qingdao), Zhejiang Fenhu (Jiaxing), Zhejiang Tongkang (Taizhou) and Guyue Longshan (Shaoxing). In this part, three typical flavoring substances, 5'-GMP (additive, delicious), tyrosine (amino acid, astringent taste) and gallic acid (phenolic, bitter taste), were selected to prepare SMWCNT/Au/GCE, PABSA/Au/GCE and PGA/Cu/GCE metal nanocomposites by trickling and cyclic voltammetry. The modified electrode was used to quantitatively determine three flavoring substances in a series of concentration gradient solutions by electrochemical methods such as LSV and DPV under the optimum pH and sweeping speed conditions. The detection limits of the three substances on the corresponding electrode were compared with the contents in rice wine. The results showed that the contents were far greater than the detection limits. The content of the three substances in rice wine satisfies the response condition of the modified electrode and the validity of the electrode meets the requirements.Then the response current signal curve was obtained by applying the complex frequency multi-potential step method to the electrode array in the five regional rice wine.The current curve and the area around the time axis were selected as the eigenvalues and combined with PCA, LPP, LDA, LIB as the eigenvalues. SVM and ELM pattern recognition methods were used to distinguish and predict the regions of yellow rice wine. The results showed that PCA, LPP and LDA had the problems of too small distance between Fenhu and Tongkang yellow rice wine in Zhejiang Province, and scattered sample points of Guyuelongshan yellow rice wine. ELM and LIBSVM had better distinguishing effect, and the training set and prediction set had higher accuracy. It shows that the two regression models of ELM and LIBSVM perform well, especially the determination coefficient R~2 is larger.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TS261.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 韓吉林;陳洪淵;;修飾電極在流動體系電化學(xué)檢測器中的應(yīng)用與發(fā)展[J];化學(xué)傳感器;1992年04期
2 孫玉堂,,吳建人;銀基砷酸銀修飾電極測定砷的研究[J];山東建材學(xué)院學(xué)報(bào);1994年02期
3 羅敏,李輝,曹旭妮,張凌越,金利通;Pt/PolyCuTAPc/Nafion修飾電極及其應(yīng)用的研究[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年03期
4 吳婧,劉國東,鐘桐生,黃杉生,俞汝勤;抗壞血酸在2-氨基吡啶修飾電極上的電催化氧化及其應(yīng)用[J];分析科學(xué)學(xué)報(bào);2001年06期
5 吳婧;劉國東;黃杉生;俞汝勤;;苯羥基乙酸修飾電極的研制及應(yīng)用[J];化學(xué)傳感器;2001年04期
6 李家貴,陳淵,李家洲,羅濟(jì)文;聚合物薄膜修飾電極及其新進(jìn)展[J];玉林師范學(xué)院學(xué)報(bào);2002年03期
7 張玉忠,趙紅,李向軍,袁倬斌;大黃酸修飾電極對細(xì)胞色素C的催化還原[J];分析試驗(yàn)室;2003年04期
8 袁倬斌,呂元琦,鄔春華;多巴胺在聚3,4-吡啶二羧酸修飾電極上的電化學(xué)行為及其測定[J];巖礦測試;2003年04期
9 梁汝萍,邱建丁,蔡沛祥;多巴胺在聚L-天冬氨酸修飾電極上的催化氧化及測定[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
10 胡軍福,劉丹萍;茜素紅配合物修飾電極的制備及酸溶液中的電催化特性[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);2004年01期
相關(guān)會議論文 前10條
1 盧小泉;;巰基卟啉修飾電極和小波分析的應(yīng)用研究[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊)[C];2001年
2 李德蘭;鄒向勤;沈青;董紹俊;;碳納米管-十六烷基三甲基溴化銨納米復(fù)合體修飾電極檢測核酸[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(下冊)[C];2006年
3 金葆康;汪海燕;王世君;;混合自組裝層納米金修飾電極的制備及電化學(xué)行為研究[A];安徽省第五屆“興皖之光”青年學(xué)術(shù)年會論文集(理科卷)[C];2005年
4 程芹;吳康兵;周宜開;;基于乙炔黑修飾電極測定血清中抗癌新藥托泊替康的研究[A];中國生物醫(yī)學(xué)工程學(xué)會成立30周年紀(jì)念大會暨2010中國生物醫(yī)學(xué)工程學(xué)會學(xué)術(shù)大會報(bào)告論文[C];2010年
5 黃秀玲;劉慧宏;;過氧化氫酶修飾電極在有機(jī)/水混合溶液中的分析應(yīng)用[A];中國化學(xué)會第二十五屆學(xué)術(shù)年會論文摘要集(下冊)[C];2006年
6 劉素芹;戴高鵬;;抗壞血酸在聚槲皮素修飾電極上的電化學(xué)行為[A];湖北省化學(xué)化工學(xué)會第十一屆分析化學(xué)專業(yè)年會論文集[C];2007年
7 楊昌柱;黃健;崔艷萍;張敬東;濮文虹;曾巍;;新型納米金修飾電極的制備及對尿酸和抗壞血酸的電催化氧化[A];第四屆海峽兩岸分析化學(xué)學(xué)術(shù)會議論文集[C];2006年
8 翟云云;楊勤燕;施國躍;金利通;;MCNTs/mv RuO/RuCN修飾電極的構(gòu)筑及其電催化性質(zhì)研究[A];中國化學(xué)會第26屆學(xué)術(shù)年會分析化學(xué)分會場論文集[C];2008年
9 廖蘇琪;王方玲;韋艷芬;方曉雪;李燾;吳佳雯;胡琪;譚學(xué)才;;硝苯地平在石墨烯修飾電極上的電化學(xué)行為及測定研究[A];中國化學(xué)會第十七屆全國有機(jī)分析與生物分析學(xué)術(shù)研討會論文集[C];2013年
10 朱珠;金傳明;張海麗;;杯芳烴離子鹽修飾電極測定銀離子[A];大環(huán)化學(xué)和超分子化學(xué)的新發(fā)展——當(dāng)前學(xué)科交叉的一個(gè)重要橋梁——中國化學(xué)會全國第十五屆大環(huán)化學(xué)暨第七屆超分子化學(xué)學(xué)術(shù)討論會論文摘要集[C];2010年
相關(guān)博士學(xué)位論文 前10條
1 李銀峰;靈敏伏安傳感器的構(gòu)筑及其在藥物分析中的應(yīng)用[D];鄭州大學(xué);2015年
2 趙曉娟;石墨烯及類石墨烯與納米半導(dǎo)體修飾電極的制備及中文其分析應(yīng)用研究[D];蘭州大學(xué);2015年
3 于盛姣;石墨烯/導(dǎo)電聚酰亞胺修飾電極的制備及應(yīng)用[D];蘭州大學(xué);2015年
4 朱文彩;石墨烯基復(fù)合物修飾電極的制備及其電化學(xué)檢測應(yīng)用[D];山東大學(xué);2015年
5 湯勇錚;納米碳材料修飾電極測定體液中鋁和環(huán)境中酚類污染物[D];南京理工大學(xué);2015年
6 劉大亮;陶瓷型脂質(zhì)體基納米復(fù)合物電極材料的制備及應(yīng)用[D];遼寧大學(xué);2016年
7 司曉晶;碳基納米復(fù)合材料修飾電極的制備及其在藥物分析中的應(yīng)用[D];上海大學(xué);2016年
8 唐婧;基于碳納米管復(fù)合修飾電極對酚類物質(zhì)的檢測研究[D];安徽大學(xué);2017年
9 郭偉華;多酸基復(fù)合修飾電極的制備及其電催化和光電催化性能研究[D];東北師范大學(xué);2010年
10 田利;過渡金屬化合物修飾電極的研究[D];吉林大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 張瑩;噻唑聚合物膜修飾電極的制備及其在生物分析中的應(yīng)用[D];上海師范大學(xué);2015年
2 楊紀(jì)春;新型功能化碳納米管修飾電極的構(gòu)建及其應(yīng)用研究[D];遼寧大學(xué);2015年
3 唐巍敏;幾種新型酚類傳感器的構(gòu)置及應(yīng)用研究[D];西安建筑科技大學(xué);2015年
4 索高超;三種金屬有機(jī)框架化合物合成及其電化學(xué)生物傳感器的構(gòu)筑研究[D];西安建筑科技大學(xué);2015年
5 楊凌茜;食品添加成分的電化學(xué)分析方法研究[D];鄭州大學(xué);2015年
6 林妍;PTFE修飾電極的制備及其在芳香有機(jī)物電合成中的應(yīng)用[D];福建師范大學(xué);2015年
7 劉振平;納米材料電化學(xué)傳感器的研制及其中藥分析中的應(yīng)用[D];廣東藥學(xué)院;2015年
8 李佳;靜電紡絲技術(shù)制備微納纖維及其電化學(xué)傳感應(yīng)用[D];中國礦業(yè)大學(xué);2015年
9 俞洋;修飾碳納米管電極電催化降解水中頭孢他啶的研究[D];北京化工大學(xué);2015年
10 丁永;基于導(dǎo)電聚合物的復(fù)合材料修飾電極的制備及其在鉛離子檢測中的應(yīng)用[D];安徽工業(yè)大學(xué);2014年
本文編號:2192473
本文鏈接:http://sikaile.net/guanlilunwen/pinpaiwenhualunwen/2192473.html