天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 貨幣論文 >

基于隨機(jī)利率模型的歐式期權(quán)定價(jià)研究

發(fā)布時(shí)間:2018-03-25 09:02

  本文選題:期權(quán)定價(jià) 切入點(diǎn):隨機(jī)利率 出處:《哈爾濱工程大學(xué)》2012年碩士論文


【摘要】:本文主要討論基于隨機(jī)利率模型的歐式期權(quán)定價(jià)問(wèn)題,包括以下幾個(gè)方面的內(nèi)容:隨機(jī)分析和期權(quán)定價(jià)基本理論,基于無(wú)紅利支付股票的衍生證券所必須滿足的Black-Scholes方程的產(chǎn)生及其背景知識(shí),利用偏微分方法和等價(jià)鞅測(cè)度法分別求解Black-Scholes公式,在特定隨機(jī)利率模型和一般隨機(jī)利率模型下對(duì)歐式期權(quán)定價(jià)進(jìn)行討論,以及在更加復(fù)雜的假設(shè)下,,推導(dǎo)隨機(jī)利率模型下支付紅利的帶跳的歐式期權(quán)的定價(jià)公式. 本文對(duì)期權(quán)定價(jià)的討論都是以股票作為標(biāo)的資產(chǎn)來(lái)說(shuō)明,對(duì)股票價(jià)格的行為模式進(jìn)行了詳細(xì)的闡述,并且在無(wú)套利框架下,通過(guò)構(gòu)造包含衍生證券和標(biāo)的股票的組合,利用偏微分方法和等價(jià)鞅測(cè)度法分別推導(dǎo)出符合衍生證券價(jià)格的Black-Scholes方程,總結(jié)性地給出了兩種方法的內(nèi)在聯(lián)系.本文著重點(diǎn)在于改進(jìn)Black-Scholes模型的固有假設(shè)條件,在一般隨機(jī)利率模型下,就利率與股票波動(dòng)源是否相關(guān)兩種情況,對(duì)原有的期權(quán)定價(jià)公式進(jìn)行延拓.本文最后還給出了基于隨機(jī)利率模型支付紅利的帶跳的歐式期權(quán)定價(jià)的解析解,從而進(jìn)一步拓展了Black-Scholes期權(quán)定價(jià)模型.
[Abstract]:This paper mainly discusses the European option pricing problem based on stochastic interest rate model, including the following aspects: stochastic analysis and the basic theory of option pricing, Based on the generation and background knowledge of Black-Scholes equation for derivative securities without dividend payment, the Black-Scholes formula is solved by using partial differential method and equivalent martingale measure method, respectively. This paper discusses the pricing of European options under the specific stochastic interest rate model and the general stochastic interest rate model, and under more complicated assumptions, deduces the pricing formula of the hopped European option with dividend under the stochastic interest rate model. In this paper, the discussion of option pricing is explained by taking stock as the underlying asset, and the behavior mode of stock price is explained in detail, and the combination of derivative securities and underlying stock is constructed under the framework of no arbitrage. By using the partial differential method and the equivalent martingale measure method, the Black-Scholes equation corresponding to the price of derivative securities is derived, and the intrinsic relations of the two methods are given. The emphasis of this paper is to improve the inherent assumptions of the Black-Scholes model. Under the general stochastic interest rate model, whether the interest rate is related to the source of stock volatility, In the end, the analytical solution of European option pricing with jump based on stochastic interest rate model is given, which further extends the Black-Scholes option pricing model.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:F224;F830.9

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊立洪;賓海妃;藍(lán)雁書;;可轉(zhuǎn)換債券定價(jià)理論發(fā)展的研究[J];北京工商大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2006年04期

2 謝惠揚(yáng),陳懷軍,畢秋香;股票價(jià)格服從幾何布朗運(yùn)動(dòng)的證明[J];長(zhǎng)沙電力學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年01期

3 王承煒,吳沖鋒;上市公司可轉(zhuǎn)換債券價(jià)值分析[J];系統(tǒng)工程;2001年04期

4 周孝華;一種股票價(jià)格行為模式的一般化——從布朗運(yùn)動(dòng)到分形布朗運(yùn)動(dòng)[J];桂林電子工業(yè)學(xué)院學(xué)報(bào);2000年04期

5 朱丹;;附有回售條款的可轉(zhuǎn)換債券的鞅定價(jià)[J];湖南師范大學(xué)自然科學(xué)學(xué)報(bào);2005年04期

6 朱丹;;附有回購(gòu)條款的可轉(zhuǎn)換債券的鞅定價(jià)[J];湖南科技學(xué)院學(xué)報(bào);2006年05期

7 朱丹;;股價(jià)波動(dòng)源模型下可轉(zhuǎn)換債券的鞅定價(jià)[J];金融經(jīng)濟(jì);2007年22期

8 段

本文編號(hào):1662435


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/huobilw/1662435.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶de5ec***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com