隨機(jī)需求下的生產(chǎn)—庫(kù)存—運(yùn)輸聯(lián)合優(yōu)化模型
[Abstract]:In the supply chain cost, production cost, inventory cost and transportation cost play an important role, so production management, inventory management and transportation management have become three important aspects of supply chain management. In real life, many factors are randomly changed, so the traditional literature on enterprise or supply chain management mainly considers the joint optimization of production and inventory or the optimization of inventory and transportation. In this paper, the joint optimization model of production-inventory and transportation under stochastic demand is studied for the non-integrated supply chain. The main research work is as follows: (1) considering the joint optimization problem of production-stock-transport for stochastic demand issuing suppliers and multiple retailers. In the independent decision, each retailer independently decides its optimal order quantity and the optimal ordering point, and the supplier distributes it according to the decision of each retailer. In the joint decision, the supplier decides the delivery quantity and delivery time of each retailer uniformly. Based on this, the production-inventory transportation optimization model of single supplier and multi-retailer is established. A two-stage algorithm combining particle swarm optimization and simulated annealing algorithm is used to calculate the optimal delivery volume, the optimal transportation path and the maximum expected total profit. Revenue sharing contracts are then used to distribute the increased profits reasonably to suppliers and retailers, so that the profits of all parties are increased, thus encouraging the parties to cooperate. Finally, numerical examples show that the joint optimization model is superior to the independent decision model. (2) considering the production-inventory-transportation joint optimization problem of multiple suppliers and retailers under random demand. If the distance between the retailer and the supplier is less than or equal to a fixed distance, the freight will be borne by the supplier; otherwise, the freight will be borne by the retailer. Each retailer selects the supplier according to the profit and decides its optimal order quantity and the optimal ordering point independently. The supplier distributes the supplier according to the decision of each retailer. In joint decision making, retailers are partitioned by nearest neighbor algorithm, and the problem after partitioning is transformed into a production-stock-transportation optimization model of suppliers with random demand to multiple retailers.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:F274;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張茹秀,徐天芳;價(jià)格折扣/運(yùn)輸折扣的庫(kù)存—運(yùn)輸聯(lián)合優(yōu)化模型[J];大連海事大學(xué)學(xué)報(bào);2005年03期
2 趙達(dá);李軍;馬丹祥;;求解隨機(jī)需求庫(kù)存-路徑問題的一種算法[J];系統(tǒng)工程;2006年05期
3 傅成紅;符卓;;單周期離散隨機(jī)需求的庫(kù)存-運(yùn)輸整合優(yōu)化[J];系統(tǒng)工程;2007年01期
4 王勇;鄧哲鋒;徐鵬;;基于多折扣價(jià)格報(bào)價(jià)的庫(kù)存與運(yùn)輸整合優(yōu)化模型[J];工業(yè)工程;2009年06期
5 奚飛;馬成;周永務(wù);;基于不同訂貨周期策略的庫(kù)存路徑問題研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
6 劉麗文;供應(yīng)鏈管理思想及其理論和方法的發(fā)展過程[J];管理科學(xué)學(xué)報(bào);2003年02期
7 繆周;徐克林;朱偉;;考慮運(yùn)輸—生產(chǎn)—庫(kù)存集成的精益供應(yīng)鏈模型[J];制造業(yè)自動(dòng)化;2011年11期
8 施文武;嚴(yán)洪森;汪崢;;一種多周期隨機(jī)需求生產(chǎn)/庫(kù)存控制方法[J];控制與決策;2007年09期
9 王亮,孫紹榮,吳曉層;二級(jí)分銷系統(tǒng)的運(yùn)輸與庫(kù)存控制整合優(yōu)化研究[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2005年04期
10 徐紅;施國(guó)洪;;彈性需求下的閉環(huán)供應(yīng)鏈?zhǔn)杖胭M(fèi)用共享契約研究[J];統(tǒng)計(jì)與決策;2012年07期
本文編號(hào):2369936
本文鏈接:http://sikaile.net/guanlilunwen/gongyinglianguanli/2369936.html