冷庫氨制冷系統(tǒng)的應(yīng)用研究
[Abstract]:Ammonia is a natural refrigerant with good thermal performance, and both ODP and GWP are zero. Especially, ammonia has been widely used in refrigeration system of cold storage. However, because of its toxicity and flammability, the safety accidents of cold storage caused by ammonia leakage occur frequently. Therefore, reducing the use of ammonia is one of the effective ways to ensure the safety of the system. Under this background, a quantitative liquid supply system of ammonia pump is proposed in this paper, which can not only guarantee the heat transfer performance but also reduce the cycle ratio of ammonia, and then reduce the charge of ammonia in the evaporating pipe and the whole refrigeration system. First of all, the quantitative liquid supply system of ammonia pump and the existing ammonia pump supply system are compared with the ammonia direct expansion liquid supply system. The results show that the ammonia pump quantitative liquid supply system avoids the existence of high pressure liquid pipeline from the outlet of the storage device to the inlet of the evaporator. The harm degree of leakage is reduced; The liquid supply is the actual demand, which reduces the amount of liquid stored in the evaporator and the long pipeline between the evaporator outlet and the low pressure circulation barrel, and enhances the safety of the system. Secondly, the ammonia charge in the evaporator with different cycle rate was studied by theoretical analysis. The Tom interface void ratio model, the modified Zivi slip ratio model and the Smith slip ratio correction model, which are widely used in the calculation of refrigerant charge in refrigeration system, are used to calculate the average ammonia density in the entire evaporating row. And then the ammonia charge in the whole evaporating tube is calculated. The calculated results of the two models are in good agreement, and the results show that the circulation ratio decreases from 4 to 1, and the ammonia charge in the evaporating row decreases by about 60%. The above results indicate that the ammonia charge in evaporating tube can be greatly reduced by using ammonia pump quantitative liquid supply system, and then the ammonia charge in high / low pressure cycle barrel in refrigeration system can be reduced. Thirdly, the heat transfer coefficient of evaporating tube with different cycle rate is analyzed by theoretical analysis. A mathematical model of evaporating tube based on empirical formula of forced convection heat transfer in a tube is established. The effects of mass flow rate, circulation ratio and frost thickness on the heat transfer performance of the system are analyzed by simulation calculation. The results show that the heat transfer performance of the system is affected by mass flow rate, circulation ratio and frost layer thickness. The total heat transfer coefficient of evaporating tube is reduced by 7.1% when the cycle rate is reduced from 4 to 1. Finally, the quantitative liquid supply system of ammonia pump is set up, and the relationship between circulation ratio and charge and heat transfer performance is further studied. The experimental results also show that the reduction of circulation ratio can greatly reduce the supply pipe. The amount of ammonia charge in the evaporating pipe and the return pipe; The circulation ratio decreased from 4.7 to 1.4, and the total heat transfer coefficient of evaporating tube decreased only 6.6%, which indicated that the circulation rate had little effect on the heat transfer performance. Furthermore, the ammonia refrigeration system of the Xipao Food Refrigeration Plant of Beijing Erzhang Group Co., Ltd has been reformed, and the ammonia pump quantitative liquid supply system has been running well after the revamping. To sum up, the ammonia pump quantitative liquid supply system significantly reduces the amount of ammonia stored in the evaporating drain under the condition of ensuring the heat transfer performance. The research results of this paper have important theoretical significance and practical value to the revamping of the existing ammonia refrigeration system and the improvement of the safety of the ammonia refrigeration system in the new ammonia refrigeration system.
【學位授予單位】:北京工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TB657.1
【共引文獻】
相關(guān)期刊論文 前10條
1 柏立戰(zhàn);林貴平;;小管徑冷凝管的數(shù)學模型[J];北京航空航天大學學報;2009年06期
2 陳彪;顧國彪;;高溫超導電機轉(zhuǎn)子冷卻技術(shù)的研究[J];電工技術(shù)學報;2011年10期
3 李虹波;陳炳德;趙華;熊萬玉;;矩形通道干涸后傳熱計算模型[J];動力工程學報;2010年11期
4 王明富;;液氮貯存加壓汽化系統(tǒng)調(diào)試問題分析及改進措施[J];低溫與特氣;2005年06期
5 陳歡;李維;王振通;;油氣兩相流體縱掠水平螺旋扁管管束摩擦壓降的實驗研究[J];低溫與超導;2010年12期
6 李軍;孫禮杰;張亮;;液氧煤油發(fā)動機預(yù)冷系統(tǒng)回流管絕熱影響分析[J];低溫與超導;2011年11期
7 石磊;石誠;武楠;李少寧;;直接空冷凝汽器傾斜逆流管束內(nèi)氣液兩相流動分析[J];電站系統(tǒng)工程;2010年01期
8 賈曉鴻;秋穗正;楊曉強;尹海鋒;賈斗南;聶常華;;水平矩形窄縫通道內(nèi)水沸騰流動特性實驗研究[J];工程熱物理學報;2007年06期
9 凌勛;;制冷裝置蒸發(fā)器的仿真與實驗研究[J];桂林航天工業(yè)高等?茖W校學報;2007年04期
10 李澤芳;劉素;;CFZ0.4D型家用除濕機毛細管結(jié)構(gòu)參數(shù)的確定[J];桂林航天工業(yè)高等?茖W校學報;2008年02期
相關(guān)會議論文 前4條
1 劉斌;蘇蕓;蔡景輝;;CO_2冷風機的設(shè)計優(yōu)化[A];走中國創(chuàng)造之路——2011中國制冷學會學術(shù)年會論文集[C];2011年
2 李志彪;吳應(yīng)湘;;射線衰減法在水平氣液兩相流動流型識別中的應(yīng)用[A];2007年度海洋工程學術(shù)會議論文集[C];2007年
3 李振興;楊前明;劉玉峰;;直膨式太陽能集熱器系統(tǒng)管道壓降分析與計算[A];山東制冷空調(diào)——2009年山東省制冷空調(diào)學術(shù)年會“煙臺冰輪杯”優(yōu)秀論文集[C];2009年
4 單巍巍;劉波濤;丁文靜;劉敏;;重力式自循環(huán)系統(tǒng)中熱沉結(jié)構(gòu)設(shè)計方法研究[A];第九屆全國低溫工程大會論文集[C];2009年
相關(guān)博士學位論文 前10條
1 傅松;缸蓋冷卻水套內(nèi)沸騰傳熱特性的研究[D];山東大學;2010年
2 徐書根;層板包扎容器多元物料蒸氣爆炸及殼體力學響應(yīng)研究[D];山東大學;2010年
3 韓豐云;噴霧冷卻傳熱特性、傳熱強化及溫度不均勻性研究[D];中國科學技術(shù)大學;2011年
4 王宇;回路脈動熱管運行傳熱特性及管路結(jié)構(gòu)改進的研究[D];天津大學;2012年
5 賈原媛;三相循環(huán)流化床麥草漿黑液蒸發(fā)器防、除垢和強化傳熱研究[D];天津大學;2003年
6 董兆一;飽和液氮爆發(fā)沸騰實驗與理論研究[D];中國科學院研究生院(工程熱物理研究所);2005年
7 楊俊蘭;CO_2跨臨界循環(huán)系統(tǒng)及換熱理論分析與實驗研究[D];天津大學;2005年
8 齊守良;微通道中液氮流動和換熱特性研究[D];上海交通大學;2007年
9 安慶龍;低溫噴霧射流冷卻技術(shù)及其在鈦合金機械加工中的應(yīng)用[D];南京航空航天大學;2006年
10 段金明;真空排污系統(tǒng)輸送機理及系統(tǒng)優(yōu)化研究[D];華中科技大學;2006年
相關(guān)碩士學位論文 前10條
1 李振興;直膨式太陽能熱泵熱水系統(tǒng)性能的優(yōu)化分析[D];山東科技大學;2010年
2 徐曉輝;小管徑氣液兩相流光學測量系統(tǒng)[D];浙江大學;2011年
3 謝寶軍;熱虹吸泵的實驗研究[D];東華大學;2011年
4 王會林;撞擊流空化反應(yīng)器流場特性研究[D];沈陽工業(yè)大學;2011年
5 蔡景輝;CO_2低溫分離式熱管的實驗研究[D];天津商業(yè)大學;2011年
6 單紹榮;管徑及側(cè)向載荷對管內(nèi)沸騰兩相流流動和傳熱影響[D];南京航空航天大學;2009年
7 張中偉;保守分析與最佳估算相結(jié)合之LOCA認證分析方法論[D];上海交通大學;2011年
8 尹琰鑫;過載作用下蒸發(fā)器的換熱和阻力特性研究[D];南京航空航天大學;2010年
9 于忠杰;豎直圓管內(nèi)液氮兩相流動沸騰摩擦阻力及傳熱特性研究[D];上海交通大學;2012年
10 楊小柱;再生冷卻超燃沖壓發(fā)動機啟動階段的傳熱特性研究[D];國防科學技術(shù)大學;2011年
,本文編號:2451293
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2451293.html