基于梯度提升模型的負相關(guān)學習算法的研究與應(yīng)用
[Abstract]:The first work of the paper is to study the integration of learning. In the field of machine learning, we call a system or model that has the ability to learn from empirical knowledge, called a learner. In general, it is much less expensive to train a weaker model than to train a more powerful model. Integrated learning is a kind of special machine learning method, its idea is not to train a strong learner directly, but by combining a group of weak learner to get an integrated learner with strong learning ability. The performance of the integrated learning algorithm depends on two factors: the performance of the base-based learner and the difference between the base-based learning devices. At present, the commonly used integrated learning algorithm includes Bagging, Boosting and the like, while the performance of each base learner is improved, the difference between the base-learning devices is maintained in a recessive way, so that the performance of the final integrated learner is optimized. Negative correlation learning (NCL) is a kind of integrated learning algorithm, which is commonly used in the integration of neural network, which is introduced into the loss function of the neural network as a dominant measure standard, and then influences the training of the neural network. The performance and diversity of the base neural network can be balanced by adjusting the influence factors, so as to obtain an integrated neural network model with optimal performance. Based on the idea of NCL, we put forward a new kind of integrated learning calculation The first point of NCL is to use the neural network as the base learner, and most of the research on the NCL is based on the neural network as the base learning model. The main reason is that the neural network has a dominant loss function. The BP algorithm of training neural network is a kind of optimization calculation using gradient descent method to minimize the loss function. This paper compares the similarity between the neural network and another commonly used learning model: the gradient lifting machine (GBM), and puts forward the idea of using the GBM instead of the neural network to practice the negative correlation study, and designs a new integrated learning algorithm: GB-NC L. The design idea and detailed steps of the GB-NCL algorithm are given in this paper, and the classification of the NCL algorithm and the gradient lifting algorithm based on the neural network are compared by the experiment. The results show that the GB-NCL algorithm has better performance compared with the two algorithms. The second work of the paper is to design and implement a new classification algorithm for high-spectral remote sensing image classification based on the GB-NCL algorithm: RCA The characteristic of high-spectral remote sensing image classification is that the mark sample is small, the unlabeled sample is more, and the pixel point of the remote sensing image of the artificial mark belongs to the cost of the object class. The first one, using the active learning algorithm, selects the most valuable pixel points from a large number of unlabeled samples to let the human expert mark the place to which it belongs. The feature of this method is that the quality of the new training samples is high (the class label is 100% correct), but Second, with a semi-supervised learning algorithm, the trained classifier is used to give some unlabeled sample-like reference numbers, and they are treated as real-available samples, added to the training set, and we call it "trunk>" dummy mark " trunk > Samples. This type of algorithm can greatly improve the number of training samples, but cannot guarantee the class label of the newly added pseudo-marker sample. It is correct. The quantity is too large and the quality is not good. This is a semi-supervised learning algorithm. The feature of this paper is to combine the active learning with the semi-supervised learning, and to introduce a set of "pseudo-"-labeled sample verification mechanism to check the pseudo-mark samples introduced in the semi-supervised learning and to use the non-qualified pseudo-marker samples. The method can not only obtain enough training samples, but also guarantee the training sample. The quality of this set. With a more complete set of training, the trained classifiers will naturally Better performance. According to this idea, we designed RCA for hyperspectral remote sensing in the paper The SSL algorithm. RCASSL not only uses the tagged samples while training the classifier, but uses semi-supervised learning to introduce Pseudo-mark samples. We use the GB-NCL algorithm to check the pseudo-marker samples introduced by the semi-supervised learning method to improve the pseudo-mark sample. We compared the RCASSL algorithm, the MCLU-ECBD algorithm and the RCASSL-No on the high-spectral remote sensing data set. The PLV algorithm. The MCLU-ECBD algorithm is a common master The RCASSL-NoPLV algorithm is an RCA to remove the pseudo-marker-like verification link. The results of the experiment show that, in the case of introducing the same number of tag samples, the algorithm of the RCASSL The result of comparison between RCASSL and MCLU-ECBD shows that combining semi-supervised learning can improve the performance of active learning algorithm, and the comparison between RCASSL and RCASSL-NoPLV shows that we use the GB-NCL algorithm to implement the pseudo-mark verification machine.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TP18;TP751
【共引文獻】
相關(guān)期刊論文 前10條
1 蔡坤琪;;基于相關(guān)鑒別分析和隨機森林的人臉識別方法[J];安徽電子信息職業(yè)技術(shù)學院學報;2012年01期
2 潘希姣;;多子群粒子群集成神經(jīng)網(wǎng)絡(luò)[J];安徽建筑工業(yè)學院學報(自然科學版);2007年02期
3 王爾丹;人群運動與密度估計技術(shù)研究[J];安全;2005年03期
4 馮學軍;;最小二乘支持向量機的研究與應(yīng)用[J];安慶師范學院學報(自然科學版);2009年01期
5 周德強;馮建中;;建筑物沉降預測的改進Verhulst模型研究[J];地下空間與工程學報;2011年01期
6 王立平;孔小梅;付夢印;王美玲;張甲文;姜明;;Temperature Drift Modeling of FOG Based on LS-WSVM[J];Journal of China Ordnance;2008年03期
7 王亮;胡靜濤;;基于LS-SVM的光刻過程R2R預測控制方法[J];半導體技術(shù);2012年06期
8 田盛豐;基于核函數(shù)的學習算法[J];北方交通大學學報;2003年02期
9 焦健;瞿有利;;知網(wǎng)的話題更新與跟蹤算法研究[J];北京交通大學學報;2009年05期
10 林正奎;唐煥玲;魯明羽;王敬東;;基于特征多視圖提升Naive Bayesian的Boosting改進算法[J];北京交通大學學報;2009年06期
相關(guān)會議論文 前10條
1 宋海鷹;桂衛(wèi)華;陽春華;;基于核偏最小二乘的簡約最小二乘支持向量機及其應(yīng)用研究[A];第二十六屆中國控制會議論文集[C];2007年
2 宋海鷹;桂衛(wèi)華;陽春華;;基于最小二乘支持向量機的Hammerstein-Wiener模型辨識[A];第二十六屆中國控制會議論文集[C];2007年
3 ;Inverse System Control of Nonlinear Systems Using LS-SVM[A];第二十六屆中國控制會議論文集[C];2007年
4 ;A Novel Proximal Support Vector Machine and Its Application in Radar Target Recognition[A];第二十六屆中國控制會議論文集[C];2007年
5 ;A CDMA Signal Receiver Based on LS-SVM[A];第二十六屆中國控制會議論文集[C];2007年
6 ;LS-SVM Based Stable Generalized Predictive Control[A];第二十七屆中國控制會議論文集[C];2008年
7 閻綱;梁昔明;龍祖強;李翔;;一種新的提前一步預測控制算法[A];第二十七屆中國控制會議論文集[C];2008年
8 孫玉坤;王博;丁慎平;;基于模糊支持向量機的賴氨酸發(fā)酵軟測量[A];第二十七屆中國控制會議論文集[C];2008年
9 ;GA Based LS-SVM Classifier for Waste Water Treatment Process[A];第二十七屆中國控制會議論文集[C];2008年
10 柴偉;孫先仿;喬俊飛;;有監(jiān)督的等距映射和k近鄰分類結(jié)合用于集員辨識[A];第二十九屆中國控制會議論文集[C];2010年
相關(guān)博士學位論文 前10條
1 趙瑩;半監(jiān)督支持向量機學習算法研究[D];哈爾濱工程大學;2010年
2 于化龍;基于DNA微陣列數(shù)據(jù)的癌癥分類技術(shù)研究[D];哈爾濱工程大學;2010年
3 李建平;面向異構(gòu)數(shù)據(jù)源的網(wǎng)絡(luò)安全態(tài)勢感知模型與方法研究[D];哈爾濱工程大學;2010年
4 孟宇龍;基于本體的多源異構(gòu)安全數(shù)據(jù)聚合[D];哈爾濱工程大學;2010年
5 鄔俊;基于交互式語義推理的圖像檢索算法研究[D];大連海事大學;2010年
6 李書艷;單點氨基酸多態(tài)性與疾病相關(guān)關(guān)系的預測及其機制研究[D];蘭州大學;2010年
7 張明;電能質(zhì)量擾動相關(guān)問題研究[D];華中科技大學;2010年
8 姚志明;基于步態(tài)觸覺信息的身份識別研究[D];中國科學技術(shù)大學;2010年
9 許偉;基于進化算法的復雜化工過程智能建模方法及其應(yīng)用[D];華東理工大學;2011年
10 向國齊;支持向量回歸機代理模型設(shè)計優(yōu)化及應(yīng)用研究[D];電子科技大學;2010年
相關(guān)碩士學位論文 前10條
1 曾傳華;基于顏色和紋理特征的竹條分級方法研究[D];華中農(nóng)業(yè)大學;2010年
2 馬冉冉;集成學習算法研究[D];山東科技大學;2010年
3 王萍;語音情感識別研究[D];山東科技大學;2010年
4 田文娟;基于支持向量機的人民幣序列號識別方法的研究[D];山東科技大學;2010年
5 呂萬里;中文文本分類技術(shù)研究[D];山東科技大學;2010年
6 孟培培;基于3S的土地督察信息系統(tǒng)研究[D];山東科技大學;2010年
7 李海清;支持向量機在金融市場預測中的應(yīng)用[D];遼寧師范大學;2010年
8 江達秀;基于HMAX模型的人臉表情識別研究[D];浙江理工大學;2010年
9 石國強;基于規(guī)則的組合分類器的研究[D];鄭州大學;2010年
10 李光遠;基于在線聚類和最小二乘支持向量機的模糊建模方法研究[D];鄭州大學;2010年
,本文編號:2446666
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2446666.html