仿鯨魚鰭凹凸前緣翼型流動分離控制及應(yīng)用研究
[Abstract]:Humpback whales have a protuberant limb-shaped pectoral fin that provides a powerful force for flapping and turning. Inspired by this biological characteristic. In this paper, the aerodynamic characteristics, flow field characteristics and flow control mechanism of NACA634-021-based airfoils and corresponding bionic concave-convex front airfoils are studied. On this basis, the flow control of bionic concave-convex leading edge of typical wind turbine airfoil DU40,DU18 is studied experimentally and numerically, and the bionic concave-convex front blade and smooth blade are also studied experimentally. For the smooth airfoil and concave-convex front wing models based on NACA634-021 airfoil, the lift and resistance were measured in a DC wind tunnel using a three-component force balance and a particle image velocimeter (PIV) at an angle of attack of 0. 0 擄and a particle image velocimeter (PIV), respectively, at an angle of attack of 0. 0. 90 擄. The aerodynamic characteristics, velocity, vorticity and boundary layer characteristics of pitching moment equal airfoil are studied. The effectiveness and mechanism of flow control of bionic concave and convex leading edge are studied experimentally. The experimental results show that the stall characteristics of concave and convex front flanks are more smooth than that of smooth airfoils, and the aerodynamic characteristics are obviously improved after stall. The lift coefficient increases by 18%, the lift-drag ratio increases by 12%, and the drag coefficient decreases by 10%. In the area of 30 擄~ 80 擄high angle of attack, the concave and convex leading edge still has certain effect. According to the analysis, the mechanism of the airfoil acting on the stall control is that when the air flows around the convex front, the air flow is guided around the convex peak, and a pair of reverse rotating flow vortices are produced on both sides of each convex envelope. The scope of the vortex structure is not only confined to the boundary layer, but also enhances the momentum exchange between the inner and outer potential flows in the boundary layer, and then enhances the airfoil's ability to resist the inverse pressure gradient, reduces the negative pressure gradient on the suction surface, and delays the flow separation. The stall was delayed. At the same time, the variation trend of the flow vorticity is analyzed. The value of the torus varies little between the angle of attack 17 擄~ 25 擄, which makes the airfoil stall smooth. Based on the flow control mechanism of the bump front, the ratio of the effective height of the bump front to the boundary layer heffc/ 未 is further analyzed. It is found that the heffc/ 未 is less than 1, The range between 0.1 and 0.5 can effectively change the stall characteristics of airfoils, which is similar to the action of micro eddy current generator. The aerodynamic characteristics of DU40, bionic bump leading edge DU40-25wavy,DU40-11wavy and 1DU18 and bionic bump leading edge DU18-25wavy,DU18-11wavy are experimentally studied. The results show that the lift coefficient of the airfoil can be improved in the high angle of attack region. In the low angle of attack region, the aerodynamic lift of the 11wavy airfoil is more dominant than that of the smooth reduction of aerodynamic lift. The distributions of flow field and pressure coefficient of DU40 and bionic bump leading edge DU40-25wavy,DU40-11wavy and DU18 and bionic bump leading edge DU18-25wavy,DU18-11wavy in low angle of attack region and high angle of attack region are calculated. The bump has a great influence on the distribution of pressure coefficient. In the low angle of attack region, the pressure difference increases slightly due to the weak influence of the front edge of bump, and in the region of high angle of attack, the intensity of flow vorticity increases due to the leading edge of bump. The pressure coefficient increases at the leading edge of the airfoil and increases the lift coefficient. On the other hand, the improvement range of 11wavy airfoil is larger, and it shows better aerodynamic performance. Wind tunnel tests of smooth blades and concave-convex front blades were carried out on a two-blade fan test rig. The results show that for concave-convex front blades, the inlet wind speed and tip-velocity ratio are the same as those of smooth blades, respectively. The torque of the front blade increases by 15.6%, the thrust decreases by 9.7%, and the power coefficient increases by 22%.
【學(xué)位授予單位】:中國科學(xué)院研究生院(工程熱物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TK83;TB17
【共引文獻】
相關(guān)期刊論文 前10條
1 張丙飛;佘龍華;龍鑫林;;用于磁懸掛天平的五自由度位姿傳感器[J];兵工自動化;2007年07期
2 郝衛(wèi)東,鄧學(xué)鎣,曲芳亮;高速風(fēng)洞發(fā)動機進排氣動力模擬試驗技術(shù)[J];北京航空航天大學(xué)學(xué)報;2005年04期
3 于常安;李平;王羅;;三分量應(yīng)變傳感器彈性體結(jié)構(gòu)設(shè)計[J];傳感技術(shù)學(xué)報;2012年03期
4 解亞君,宋筆鋒,郭琦,郗忠祥;桿式應(yīng)變天平的優(yōu)化設(shè)計[J];傳感器技術(shù);2002年12期
5 賴傳成,尹力明;基于DSP磁懸浮球數(shù)字控制的設(shè)計[J];長沙大學(xué)學(xué)報;2003年04期
6 楊中艷;解亞軍;;六分量盒式應(yīng)變天平的有限元分析[J];彈箭與制導(dǎo)學(xué)報;2010年02期
7 白靜;解亞軍;;風(fēng)洞翼型天平校準(zhǔn)技術(shù)[J];彈箭與制導(dǎo)學(xué)報;2011年06期
8 周全;徐科軍;楊雙龍;;桿式應(yīng)變天平變負載動態(tài)建模和分段動態(tài)補償[J];電子測量與儀器學(xué)報;2012年04期
9 于衛(wèi)青;方養(yǎng)田;袁先士;陶福興;高超;;動態(tài)實驗微量滾轉(zhuǎn)力矩天平測試技術(shù)研究[J];彈箭與制導(dǎo)學(xué)報;2012年05期
10 于衛(wèi)青;袁先士;李通;陳志堅;高超;;風(fēng)洞應(yīng)變天平校準(zhǔn)系統(tǒng)加載頭快速定位技術(shù)[J];彈箭與制導(dǎo)學(xué)報;2013年02期
相關(guān)博士學(xué)位論文 前10條
1 張翔;不銹鋼沖壓焊接離心泵能量轉(zhuǎn)換特性與設(shè)計方法[D];江蘇大學(xué);2011年
2 姚裕;基于Stewart平臺的并聯(lián)風(fēng)洞天平設(shè)計理論及應(yīng)用研究[D];南京航空航天大學(xué);2005年
3 鄧向陽;壓氣機葉頂間隙流的數(shù)值模擬研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2006年
4 文鍵;基于PIV技術(shù)的換熱器內(nèi)部場分布特性研究[D];西安交通大學(xué);2006年
5 宋書恒;微型飛行器相關(guān)氣動力特性的數(shù)值模擬[D];中國空氣動力研究與發(fā)展中心;2008年
6 朱本華;低速風(fēng)洞應(yīng)變天平校準(zhǔn)系統(tǒng)總體方案及關(guān)鍵部件設(shè)計與分析[D];國防科學(xué)技術(shù)大學(xué);2009年
7 陳亮中;雙三角翼非定常分離流動的數(shù)值模擬研究[D];中國空氣動力研究與發(fā)展中心;2009年
8 陳煥龍;采用縫隙射流技術(shù)的彎曲擴壓葉柵氣動性能研究[D];哈爾濱工業(yè)大學(xué);2009年
9 張英朝;基于仿真與試驗的汽車風(fēng)洞修正研究[D];吉林大學(xué);2010年
10 吳曉晶;混流式水輪機非定常流動計算和旋渦流動診斷[D];清華大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張彪;強風(fēng)作用下大功率風(fēng)力機的振動響應(yīng)研究[D];浙江大學(xué);2011年
2 鮑崇山;H型垂直軸風(fēng)力發(fā)電機組支承塔架的結(jié)構(gòu)選型和受力性能研究[D];北京交通大學(xué);2011年
3 王志浩;中國—巴西能源合作:現(xiàn)狀、問題及解決途徑研究[D];華中師范大學(xué);2011年
4 劉志偉;高溫法珀應(yīng)變傳感器及其在應(yīng)變天平中的應(yīng)用[D];電子科技大學(xué);2011年
5 向榮;基于飛輪儲能的并網(wǎng)風(fēng)電場有功功率及頻率控制方法研究[D];西南交通大學(xué);2011年
6 王拓道;特種彎曲材料試驗機設(shè)計及魚體材料粘彈性性質(zhì)測量[D];中國科學(xué)技術(shù)大學(xué);2011年
7 宋洪珠;直驅(qū)風(fēng)力永磁同步發(fā)電機電磁設(shè)計與運行特性分析[D];重慶大學(xué);2011年
8 凌敬;葉型參數(shù)變化對葉型損失和角區(qū)分離的影響[D];哈爾濱工業(yè)大學(xué);2011年
9 胡濤;高速所風(fēng)洞天平校準(zhǔn)軟件設(shè)計及實現(xiàn)[D];電子科技大學(xué);2012年
10 田力偉;風(fēng)洞天平采集校準(zhǔn)系統(tǒng)[D];西北工業(yè)大學(xué);2003年
,本文編號:2443740
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2443740.html