天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 工程管理論文 >

基于子空間字典偶學(xué)習(xí)的高光譜圖像分類

發(fā)布時(shí)間:2019-02-22 08:35
【摘要】:針對(duì)高光譜高分辨率帶來(lái)巨大數(shù)據(jù)量和空間分辨率引起混合像元的問(wèn)題,提出了基于子空間(subspace)的字典偶學(xué)習(xí)(DPL)算法,簡(jiǎn)稱DPLsub算法。DPL算法是對(duì)字典學(xué)習(xí)的改進(jìn),它通過(guò)學(xué)習(xí)得到綜合字典和分析字典,在模式識(shí)別中體現(xiàn)了高效性,而子空間投影的方法能更好地表征噪聲和高度混合的像元。將光譜和空間特征融合的方法用于分類研究試驗(yàn)。實(shí)驗(yàn)數(shù)據(jù)是兩幅高光譜影像,比較了子空間字典偶學(xué)習(xí)(DPLsub)模型和其他三種分類器即最小二乘支持向量機(jī)(LS-SVM)、稀疏多分類回歸(SMLR)和字典學(xué)習(xí)(DL-OMP)的分類結(jié)果。實(shí)驗(yàn)結(jié)果顯示,DPLsub算法無(wú)論在時(shí)間上還是精度上都優(yōu)于其他算法,證明了這種子空間字典偶學(xué)習(xí)方法對(duì)高光譜圖像分類的可行性與高效性。
[Abstract]:In order to solve the problem that hyperspectral and hyperresolution brings huge data and spatial resolution leads to mixed pixel, a dictionary even learning (DPL) algorithm based on subspace (subspace) is proposed, which is referred to as DPLsub algorithm. DPL algorithm is an improvement on dictionary learning. By learning comprehensive dictionaries and analytical dictionaries, it has high efficiency in pattern recognition, and subspace projection can better represent noise-highly mixed pixels. The method of spectral and spatial feature fusion is used in classification research experiment. The experimental data are two hyperspectral images. The subspace dictionary-even-learning (DPLsub) model and the other three classifiers, least squares support vector machine (LS-SVM), are compared. Sparse multiple classification regression (SMLR) and dictionary learning (DL-OMP) classification results. The experimental results show that the DPLsub algorithm is superior to other algorithms in both time and accuracy. It is proved that this subspace dictionary couple learning method is feasible and efficient for hyperspectral image classification.
【作者單位】: 燕山大學(xué)信息科學(xué)與工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61273019,61473339) 河北省自然科學(xué)基金(F2013203368) 中國(guó)博士后科學(xué)基金面上項(xiàng)目(2014M561202) 河北省博士后專項(xiàng)項(xiàng)目(B2014010005) 河北省青年拔尖人才支持計(jì)劃([2013]17)資助項(xiàng)目
【分類號(hào)】:TP751

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 諶德榮;宮久路;陳乾;曹旭平;;基于樣本分割的快速高光譜圖像異常檢測(cè)支持向量數(shù)據(jù)描述方法[J];兵工學(xué)報(bào);2008年09期

2 蒲曉豐;雷武虎;張林虎;蔣奇材;;基于Fukunaga-Koontz變換的高光譜圖像異常檢測(cè)[J];紅外技術(shù);2010年04期

3 成寶芝;郭宗光;;高光譜圖像波段間相關(guān)特性研究[J];大慶師范學(xué)院學(xué)報(bào);2013年06期

4 楊龍;易宏杰;李因彥;;遙感高光譜圖像赤潮識(shí)別[J];傳感器世界;2007年05期

5 汪倩;陶鵬;;結(jié)合空間信息的高光譜圖像快速分類方法[J];微計(jì)算機(jī)信息;2010年21期

6 王立國(guó);孫杰;肖倩;;結(jié)合空-譜信息的高光譜圖像分類方法[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2010年06期

7 馮朝麗;朱啟兵;朱曉;黃敏;;基于光譜特征的玉米品種高光譜圖像識(shí)別[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期

8 付歡;龍海南;韓曉霞;;基于冗余字典的高光譜圖像的稀疏分解[J];河北軟件職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年04期

9 耿修瑞,張霞,陳正超,張兵,鄭蘭芬,童慶禧;一種基于空間連續(xù)性的高光譜圖像分類方法[J];紅外與毫米波學(xué)報(bào);2004年04期

10 張綺瑋;機(jī)載高光譜遙感圖像處理軟件系統(tǒng)[J];紅外;2005年02期

相關(guān)會(huì)議論文 前10條

1 張兵;王向偉;鄭蘭芬;童慶禧;;高光譜圖像地物分類與識(shí)別研究[A];成像光譜技術(shù)與應(yīng)用研討會(huì)論文集[C];2004年

2 高連如;張兵;孫旭;李山山;張文娟;;高光譜數(shù)據(jù)降維與分類技術(shù)研究[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

3 王成;何偉基;陳錢;;基于波段重組和小波變換的高光譜圖像嵌入式壓縮方法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

4 孫蕾;羅建書(shū);;基于分類預(yù)測(cè)的高光譜遙感圖像無(wú)損壓縮[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年

5 楊勇;劉木華;鄒小蓮;苗蓬勃;趙珍珍;;基于高光譜圖像技術(shù)的獼猴桃硬度品質(zhì)檢測(cè)[A];走中國(guó)特色農(nóng)業(yè)機(jī)械化道路——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2008年

6 張曉紅;張立福;王晉年;童慶禧;;HJ-1A衛(wèi)星高光譜遙感圖像質(zhì)量綜合評(píng)價(jià)[A];第八屆成像光譜技術(shù)與應(yīng)用研討會(huì)暨交叉學(xué)科論壇文集[C];2010年

7 高東生;高連知;;基于獨(dú)立分量分析的高光譜圖像目標(biāo)盲探測(cè)方法研究[A];國(guó)家安全地球物理叢書(shū)(八)——遙感地球物理與國(guó)家安全[C];2012年

8 馮維一;陳錢;何偉基;;基于小波稀疏的高光譜目標(biāo)探測(cè)算法[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年

9 彭妮娜;易維寧;方勇華;;基于核函數(shù)的高光譜圖像信息提取研究[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長(zhǎng)三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年

10 蒲曉豐;雷武虎;黃濤;王迪;;基于穩(wěn)健背景子空間的高光譜圖像異常檢測(cè)[A];中國(guó)光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年

相關(guān)博士學(xué)位論文 前10條

1 普晗曄;高光譜遙感圖像的解混理論和方法研究[D];復(fù)旦大學(xué);2014年

2 王亮亮;非線性流形結(jié)構(gòu)在高光譜圖像異常檢測(cè)中的應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年

3 賀智;改進(jìn)的經(jīng)驗(yàn)?zāi)B(tài)分解算法及其在高光譜圖像分類中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2014年

4 魏然;基于成像機(jī)理分析的高光譜圖像信息恢復(fù)研究[D];哈爾濱工業(yè)大學(xué);2015年

5 葉珍;高光譜圖像特征提取與分類算法研究[D];西北工業(yè)大學(xué);2015年

6 馮婕;基于軟計(jì)算和互信息理論的遙感圖像地物分類[D];西安電子科技大學(xué);2014年

7 孫濤;快速多核學(xué)習(xí)分類研究及應(yīng)用[D];西安電子科技大學(xué);2015年

8 李昌國(guó);基于譜間和校正相關(guān)性的高光譜圖像壓縮方法研究及GPU并行實(shí)現(xiàn)[D];成都理工大學(xué);2015年

9 徐速;基于壓縮感知的高光譜圖像稀疏解混方法研究[D];重慶大學(xué);2015年

10 南一冰;星載推掃型高光譜運(yùn)動(dòng)成像誤差建模與高精度校正技術(shù)研究[D];北京理工大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 豐爍;高光譜圖像波段選取問(wèn)題的改進(jìn)算法研究[D];昆明理工大學(xué);2015年

2 趙偉彥;果蔬干燥過(guò)程中的品質(zhì)無(wú)損檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

3 馬亞楠;果蔬中內(nèi)部害蟲(chóng)的高光譜圖像檢測(cè)技術(shù)研究[D];江南大學(xué);2015年

4 劉大洋;基于近紅外光譜和高光譜圖像技術(shù)無(wú)損識(shí)別獼猴桃膨大果[D];西北農(nóng)林科技大學(xué);2015年

5 王坤;高光譜圖像異常目標(biāo)檢測(cè)及光譜成像在偽裝評(píng)估方面的應(yīng)用研究[D];南京理工大學(xué);2015年

6 王啟聰;高光譜圖像分類的GPU并行優(yōu)化研究[D];南京理工大學(xué);2015年

7 程凱;無(wú)先驗(yàn)信息的高光譜圖像小目標(biāo)檢測(cè)算法研究[D];蘇州大學(xué);2015年

8 李秩期;基于高光譜及多信息融合的馬鈴薯外部缺陷無(wú)損檢測(cè)研究[D];寧夏大學(xué);2015年

9 王健;基于高光譜圖像的馬鈴薯形狀及重量分類識(shí)別建模研究[D];寧夏大學(xué);2015年

10 吳蓓芬;偏振高光譜圖像場(chǎng)景仿真及分類方法研究[D];哈爾濱工業(yè)大學(xué);2015年



本文編號(hào):2428034

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2428034.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a6f0b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com