太陽(yáng)能翅化板降膜溶液再生過(guò)程的實(shí)驗(yàn)研究
[Abstract]:Solar solution dehumidification air conditioning system is a kind of air conditioning system with great development prospect. It can use low grade heat source to realize solution regeneration, with little electricity consumption and no pollution to the environment. The collector brings together the regenerator and the solar collector. As one of the core components of the solar solution desiccant air conditioning system, the regenerator is efficient and operating. Structure and initial investment directly affect the performance and feasibility of the system. Therefore, people hope to design a reliable, and high cost-effective heat collector. Over the years, many scholars at home and abroad have done a lot of theoretical analysis and calculation and experimental research. In this paper, the theoretical analysis and experimental study on the regeneration performance of the wing plate type regenerator and the plate type regenerator are carried out, the concrete regenerator experimental bench is designed and built, and the theoretical calculation model is established. The LiCl solution was selected as the regenerated solution. The inlet temperature of air and solution, the moisture content of air and the flow rate of inlet air and solution were analyzed in the outdoor weather of Guangzhou area. The effects of solution concentration and solar radiation intensity on the solution regeneration quantity and regeneration efficiency of the two regenerators were studied. The solution regeneration capacity and the regenerator efficiency of the two regenerators were also compared. The results of experiment and theoretical analysis show that under the same experimental conditions and the same structural parameters of regenerator, the regenerator's solution regeneration capacity and regenerator efficiency are higher than those of flat plate type regenerator. The performance of the regenerator can be improved by using the wing plate type collector instead of the flat plate type regenerator. The amount of solution regeneration of the wing plate type regenerator is more than that of the flat plate type regenerator about 140g/h. The regeneration capacity of the solution can be increased by about 13 ~ 22%, and the efficiency of the regenerator can be increased by about 7%. Both of the two kinds of regenerators have the same regeneration law, that is, the amount of solution regeneration and the efficiency of regenerator increase with the increase of air inlet flow rate and inlet temperature, solution inlet flow rate and inlet temperature. With the increase of the inlet concentration of the solution and the moisture content of the air inlet, it decreases. The amount of solution regeneration increases with the increase of solar radiation intensity, and the efficiency of regenerator decreases with the increase of solar radiation intensity.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TB657.2;TK51
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 杜斌;施明恒;;太陽(yáng)能平板降膜再生過(guò)程的數(shù)值模擬[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期
2 代彥軍,王如竹,許煜雄,李春華;太陽(yáng)能液體干燥劑除濕潛能儲(chǔ)存熱質(zhì)傳遞過(guò)程研究[J];工程熱物理學(xué)報(bào);2001年05期
3 趙云,施明恒;太陽(yáng)能液體除濕空調(diào)系統(tǒng)中除濕劑的選擇[J];工程熱物理學(xué)報(bào);2001年S1期
4 彭冬根;張小松;;基于NTU的太陽(yáng)能溶液集熱/再生器性能分析[J];化工學(xué)報(bào);2008年11期
5 李震,江億,陳曉陽(yáng),劉曉華;溶液-濕空氣熱質(zhì)交換過(guò)程的匹配研究[J];暖通空調(diào);2005年01期
6 杜斌;施明恒;;太陽(yáng)能平板降膜型再生器的模擬和實(shí)驗(yàn)研究[J];太陽(yáng)能學(xué)報(bào);2008年07期
7 代彥軍,俞金娣,張鶴飛;液體除濕空調(diào)系統(tǒng)的數(shù)學(xué)模型與性能分析[J];太陽(yáng)能學(xué)報(bào);1998年03期
8 左遠(yuǎn)志;楊曉西;丁靜;;一種太陽(yáng)能溶液除濕空調(diào)集熱再生器及其性能分析(英文)[J];陜西科技大學(xué)學(xué)報(bào);2007年06期
本文編號(hào):2409890
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2409890.html