基于絲瓜微結(jié)構(gòu)的超輕仿生結(jié)構(gòu)設(shè)計與熱、力學(xué)分析
[Abstract]:In the face of complex and diverse engineering structures, engineering materials are required not only to have high strength and stiffness, but also to be lightweight and save materials. The structure of natural organisms is the result of natural selection and evolution of life for billions of years and has excellent mechanical properties. The design theory of bionic structural materials is to find out the fine structure of objects through the macroscopic and microscopic characteristics of graduate students. The main purpose of this paper is to study the bionic structure of luffa lucifera by analyzing the microstructural characteristics of natural loofah, and to design a new porous structure material similar to foam metal, and then to calibrate its mechanical and thermal conductivity. The main research contents include the following three parts: studies on the microstructures of loofah. The deep study on the structure of loofah is the basis of bionic structure design. Therefore, this paper firstly describes the macroscopic geometry of loofah, and points out that the main macroscopic morphology of loofah can be regarded as the foam structure with double holes. The inner layer and the outer layer are connected with each other by a stiffened plate 120 擄along the radial direction. Then the microstructure of luffa was observed by scanning electron microscope and laser cutting technique of Australian National University. Then the mechanical parameters (equivalent modulus of elasticity is about 8.79MPa) were measured by compression experiments. The analytical formulas of equivalent elastic modulus and density were given by means of curve fitting, based on the microstructural characteristics of loofah. The porosity of honeycomb hexagonal is simplified, and the new ultra-light bionic structure material is designed by using three-dimensional software Pro/E. The bionic structure was fabricated by using 3D printing technology using ABS-M30 as raw material, and its compression experiment was carried out. The equivalent modulus of elasticity was determined to be 166.9 ~ 180.59 MPa. Abaqus finite element software was used. The quasi-static compression and stability numerical simulation of bionic structure with ABS-M30 as material parameter was carried out by using sandwich structure with double layer splint. The equivalent elastic modulus is 133.21 MPA and the first order buckling critical load is 1064.8 N. In addition, the thermal conduction process of bionic structure is numerically simulated. Using pure aluminum as material parameter, the equivalent heat conduction coefficient is calculated to be 6.35W/ (m K).
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB12
【參考文獻】
相關(guān)期刊論文 前10條
1 習(xí)常清;李志強;敬霖;王志華;趙隆茂;;開孔泡沫金屬熱傳導(dǎo)性能的理論研究與數(shù)值模擬[J];稀有金屬材料與工程;2014年03期
2 李小麗;馬劍雄;李萍;陳琪;周偉民;;3D打印技術(shù)及應(yīng)用趨勢[J];自動化儀表;2014年01期
3 王忠宏;李揚帆;張曼茵;;中國3D打印產(chǎn)業(yè)的現(xiàn)狀及發(fā)展思路[J];經(jīng)濟縱橫;2013年01期
4 王雪瑩;;3D打印技術(shù)與產(chǎn)業(yè)的發(fā)展及前景分析[J];中國高新技術(shù)企業(yè);2012年26期
5 黎炎;李文嘉;王益奎;龍明華;;絲瓜絡(luò)在醫(yī)藥、日用洗滌及保健品等方面的應(yīng)用研究進展[J];廣西農(nóng)業(yè)科學(xué);2010年01期
6 劉曉燕;鄭春媛;黃彩鳳;;多孔材料導(dǎo)熱系數(shù)影響因素分析[J];低溫建筑技術(shù);2009年09期
7 張文毓;;新型仿生材料的研究進展[J];傳感器世界;2009年06期
8 劉趙淼;高建成;;多孔泡沫金屬抗侵徹能力研究[J];北京工業(yè)大學(xué)學(xué)報;2009年02期
9 鄧朝暉;;建筑材料導(dǎo)熱系數(shù)的影響因素及測定方法[J];工程質(zhì)量;2008年07期
10 劉培生;;泡沫金屬在雙向承載條件下的力學(xué)性能[J];稀有金屬材料與工程;2006年07期
相關(guān)博士學(xué)位論文 前2條
1 寇東鵬;細觀結(jié)構(gòu)對多孔金屬材料力學(xué)性能的影響及多目標(biāo)優(yōu)化設(shè)計[D];中國科學(xué)技術(shù)大學(xué);2008年
2 張俊彥;多孔材料的力學(xué)性能及破壞機理[D];湘潭大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 吳巧妹;絲瓜絡(luò)納米纖維素及其復(fù)合材料的制備與表征[D];福建農(nóng)林大學(xué);2014年
2 王軍;空心微珠鋁基復(fù)合泡沫材料壓縮力學(xué)行為研究[D];哈爾濱工業(yè)大學(xué);2013年
3 胡楠;改性絲瓜絡(luò)纖維素對污染物的吸附性能研究[D];河南師范大學(xué);2013年
4 徐天嬌;六邊形鋁蜂窩力學(xué)行為的尺寸效應(yīng)研究[D];太原理工大學(xué);2013年
5 王艷麗;泡沫鋁壓縮性能的有限元模擬[D];太原科技大學(xué);2010年
6 張戈;新型空間懸挑結(jié)構(gòu)仿生(蜻蜓翅膀)設(shè)計研究[D];浙江大學(xué);2007年
7 廖明順;多孔材料力學(xué)性能數(shù)值模擬[D];昆明理工大學(xué);2006年
8 金鋒;軸壓作用下矩形開孔圓柱殼的穩(wěn)定性能研究[D];浙江大學(xué);2005年
9 喻懋林;基于結(jié)構(gòu)仿生理論的高比強度、比剛度結(jié)構(gòu)設(shè)計研究[D];北京航空航天大學(xué);2005年
10 趙明娟;泡沫金屬結(jié)構(gòu)性能關(guān)系模擬研究[D];昆明理工大學(xué);2003年
,本文編號:2352988
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2352988.html