液壓可變配氣系統(tǒng)氣門運(yùn)動(dòng)規(guī)律研究
[Abstract]:As an important part of the engine, the performance of the valve system will directly affect the power performance, economy and emission level of the engine. In order to reduce fuel consumption and exhaust emissions, a new type of hydraulic variable valve system proposed by our research group is studied in this paper. It aims at satisfying the engine valve requirements to the greatest extent and making the valve movement have good kinematics and dynamics characteristics. The hydraulic system is variable by combining theoretical research with experimental research. The valve motion law of the valve system is studied. The adjustment method of the hydraulic variable valve system and the adaptability of the parameters to the optimal valve parameters of the engine and the optimization of valve motion parameters are emphatically studied. On the basis of the engine working process simulation model, the engine valve timing parameters such as valve timing angle, lift and so on are optimized. The target values of the optimal valve timing parameters under different working conditions are obtained. The trend and general law of the engine variable valve timing parameters changing with the engine operating conditions are pointed out. The regulation scheme for the variable valve timing system is formulated. The research shows that for a specific variable valve system, the adjustment of valve parameters is limited by the method, technology, structure and parameters that can be realized by the system, and generally can only meet the requirements of engine valve parameters to a certain extent. According to the changing trend of the engine's optimal valve parameters with the engine operating conditions, the valve regulation scheme of the hydraulic variable valve system is worked out on the basis of considering the engine's valve requirements, system regulation control, valve cam design and system structure integration characteristics. Compared with the valve regulation scheme with variable axle phase, the valve regulation scheme of the hydraulic variable valve system is more in line with the requirements of the optimal valve distribution parameters of the engine. The simulation results show that the simulation results are in good agreement with the experimental results, the simulation model, the parameter settings and the reliability of the output results are high. The simulation model can be used as the basis for the next step of valve motion parameter analysis and optimization. According to the requirement of valve regulation for the optimal valve distribution parameters of the engine and the problems existing in the previous research and test, the valve movement parameters of the hydraulic variable valve distribution system are optimized. The requirements of force fluctuation control can also meet the requirements of contact stress, lubrication characteristics, mechanism size, etc. The influence of valve spring parameters on valve regulating performance is studied, and the valve spring parameters are optimized by system simulation, which effectively improves the valve dynamic characteristics, hydraulic parameters and valve parameters adjustable performance in the previous study. The influence factors of valve settling speed and phase are studied and analyzed, and the parameters of cushioning mechanism are optimized by system simulation, which can effectively improve the valve settling characteristics and make the valve have lower settling speed and less phase delay at the same time. The results show that the system pressure fluctuation is effectively reduced by optimizing valve cam profile, and the suitable speed of the system is increased to more than 5000r/min. After optimizing valve spring parameters, the valve of the system at higher speed is improved. The adjustable performance ensures the valves to be adjusted effectively in the range of less than 4500r/min speed; the optimized buffer mechanism reduces the valve settling speed and rebound height on the premise of ensuring a small settling phase delay, and meets the requirements of valve settling smoothly. The valve adjusting test parameters at different speeds show that the hydraulic pressure is adjustable. The results of engine performance prediction show that the hydraulic variable valve system has obvious advantages over other variable valve systems and the fixed valve system.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH137
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;2016年底全國保有機(jī)動(dòng)車達(dá)2.9億輛[J];汽車維修與保養(yǎng);2017年02期
2 張翔宇;堯命發(fā);鄭尊清;劉海峰;;電液式可變氣門系統(tǒng)的仿真與實(shí)驗(yàn)優(yōu)化[J];汽車工程;2016年05期
3 饒沙;;汽車尾氣污染現(xiàn)狀及防治對(duì)策[J];資源節(jié)約與環(huán)保;2016年01期
4 尚勇;劉福水;王亞麗;;排氣門開啟角度對(duì)內(nèi)燃機(jī)換氣過程的影響規(guī)律研究[J];內(nèi)燃機(jī)工程;2015年02期
5 徐玉梁;王自勤;田豐果;陳家兌;;基于接觸應(yīng)力及潤滑特性分析的配氣凸輪基圓半徑計(jì)算[J];潤滑與密封;2015年04期
6 王超;袁方恩;楊陳;沈源;馮擎峰;;基于整車經(jīng)濟(jì)性的兩級(jí)可變氣門升程技術(shù)研究[J];小型內(nèi)燃機(jī)與摩托車;2014年02期
7 劉福水;尚勇;王麗;陸瀅;;進(jìn)氣門關(guān)閉角度對(duì)內(nèi)燃機(jī)換氣過程的影響規(guī)律研究[J];內(nèi)燃機(jī)工程;2013年06期
8 尚勇;劉福水;陸瀅;王亞麗;;氣門重疊角度對(duì)內(nèi)燃機(jī)換氣過程的影響規(guī)律研究[J];內(nèi)燃機(jī)工程;2015年04期
9 葉升強(qiáng);;發(fā)動(dòng)機(jī)可變氣門技術(shù)探析[J];科技信息;2013年04期
10 谷艷華;胡乃碩;高峰軍;李華;王有坤;郭英男;;無凸輪軸發(fā)動(dòng)機(jī)電液驅(qū)動(dòng)配氣機(jī)構(gòu)阻尼孔優(yōu)化設(shè)計(jì)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2012年09期
相關(guān)博士學(xué)位論文 前7條
1 高鋒軍;汽油HCCI發(fā)動(dòng)機(jī)電控液壓氣門性能及仿真研究[D];吉林大學(xué);2013年
2 謝宗法;基于配氣凸輪驅(qū)動(dòng)的全可變液壓氣門機(jī)構(gòu)的研究[D];山東大學(xué);2011年
3 王云開;無凸輪軸配氣機(jī)構(gòu)開發(fā)及在可控自燃發(fā)動(dòng)機(jī)上的應(yīng)用研究[D];吉林大學(xué);2011年
4 胡順堂;全可變氣門機(jī)構(gòu)汽油機(jī)泵氣損失控制及對(duì)燃燒過程的影響[D];天津大學(xué);2009年
5 劉小平;可變凸輪軸配氣相位機(jī)構(gòu)的測試及分析[D];天津大學(xué);2008年
6 李莉;電磁驅(qū)動(dòng)氣門機(jī)構(gòu)的設(shè)計(jì)開發(fā)和試驗(yàn)研究[D];浙江大學(xué);2004年
7 王希珍;電磁全可變氣門的仿真控制及相關(guān)研究[D];浙江大學(xué);2003年
相關(guān)碩士學(xué)位論文 前9條
1 趙利民;發(fā)動(dòng)機(jī)進(jìn)氣控制系統(tǒng)開發(fā)及試驗(yàn)研究[D];吉林大學(xué);2016年
2 雷琪;液壓容積調(diào)節(jié)式全可變配氣系統(tǒng)結(jié)構(gòu)集成研究[D];貴州大學(xué);2016年
3 潘克;液壓容積調(diào)節(jié)式全可變配氣系統(tǒng)氣門動(dòng)力學(xué)特性研究[D];貴州大學(xué);2016年
4 尹朧;柴油機(jī)可變氣門系統(tǒng)設(shè)計(jì)與仿真研究[D];西華大學(xué);2014年
5 李鑫;汽油機(jī)配氣機(jī)構(gòu)凸輪型線及配氣相位的優(yōu)化研究[D];廣東工業(yè)大學(xué);2013年
6 肖凱;汽油機(jī)配氣機(jī)構(gòu)與凸輪型線特性研究及仿真優(yōu)化設(shè)計(jì)[D];華南理工大學(xué);2013年
7 張桂昌;柴油機(jī)配氣機(jī)構(gòu)動(dòng)力學(xué)分析及凸輪型線優(yōu)化設(shè)計(jì)[D];天津大學(xué);2009年
8 靳紅玲;469Q汽油機(jī)進(jìn)氣系統(tǒng)流場特性及優(yōu)化設(shè)計(jì)[D];太原理工大學(xué);2006年
9 孫紅霞;內(nèi)燃機(jī)配氣凸輪CAD[D];西北農(nóng)林科技大學(xué);2003年
,本文編號(hào):2249152
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2249152.html