動態(tài)載荷識別的優(yōu)化方法研究
[Abstract]:At present, the frequency domain method is widely used in the field of dynamic load identification. The main principle of this method is to inverse the frequency response function matrix in the frequency domain. Then the unknown load is obtained by the measured response and the inverse matrix of the frequency response function matrix. In this method, the input and output of the system is linear, so the complex problem of dynamic load identification can be simplified, which is convenient for engineering application. In the recognition process, the difficulty of frequency-domain method is how to obtain the frequency response function matrix with small condition number, so that the system error is smaller, and the dynamic load can be accurately identified. The characteristics of the frequency response function matrix are related to the response point characteristics of the recognition. Although the method of traversing all the response points can select the frequency response function matrix with the smallest number of conditions, it is not suitable for the large number of response points because of the large amount of calculation (the amount of calculation increases exponentially with the number of response points). In this paper, the condition number of the frequency response function matrix of the response point combination is taken as the objective function by analyzing the frequency response function matrix of the single degree of freedom system and the multi-degree of freedom system. An optimization model for dynamic load identification response point selection is established. The mathematical model of this optimization model belongs to 0-1 programming in integer programming, and its optimization problem belongs to the optimization problem in discrete domain. In this paper, an improved discrete particle swarm optimization algorithm is used to solve the optimization problem. The algorithm can solve the combinatorial optimization problem on a large scale quickly. Based on the research of optimization model in this paper, several common inertial factor setting strategies are explained and compared. Finally, the simulation results are analyzed by matlab simulation experiment. The experimental results show that the model can quickly and effectively select the optimal response point combination when the number of response points is large, which shows that the model and its solution method have higher practical value in practical engineering application.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB123
【參考文獻】
相關(guān)期刊論文 前10條
1 胡曉東;袁亞湘;章祥蓀;;運籌學(xué)發(fā)展的回顧與展望[J];中國科學(xué)院院刊;2012年02期
2 祝德春;張方;姜金輝;;動態(tài)載荷激勵位置識別技術(shù)研究[J];振動與沖擊;2012年01期
3 周林;鄭四發(fā);王彬星;連小珉;李克強;;動態(tài)載荷識別位置優(yōu)化的傳遞函數(shù)相干法[J];振動工程學(xué)報;2011年01期
4 姜金輝;陳國平;張方;;一維分布的隨機動載荷激勵下結(jié)構(gòu)頻域響應(yīng)的快速算法[J];振動與沖擊;2010年08期
5 林秋紅;;整數(shù)規(guī)劃在數(shù)學(xué)建模中的應(yīng)用[J];大眾科技;2010年05期
6 沈林成;霍霄華;牛軼峰;;離散粒子群優(yōu)化算法研究現(xiàn)狀綜述[J];系統(tǒng)工程與電子技術(shù);2008年10期
7 龍磊;陳秋雙;華彥寧;徐亞;;具有同時集送貨需求的車輛路徑問題的自適應(yīng)混合遺傳算法[J];計算機集成制造系統(tǒng);2008年03期
8 郭文忠;陳國龍;;粒子群優(yōu)化算法中慣性權(quán)值調(diào)整的一種新策略[J];計算機工程與科學(xué);2007年01期
9 郭文忠;陳國龍;;求解TSP問題的模糊自適應(yīng)粒子群算法[J];計算機科學(xué);2006年06期
10 張方;秦遠田;鄧吉宏;;復(fù)雜分布動載荷識別技術(shù)研究[J];振動工程學(xué)報;2006年01期
相關(guān)博士學(xué)位論文 前3條
1 姜金輝;分布隨機動載荷識別理論與方法[D];南京航空航天大學(xué);2010年
2 李艷艷;0-1規(guī)劃問題的連續(xù)化方法研究及應(yīng)用[D];大連理工大學(xué);2009年
3 秦遠田;動載荷識別應(yīng)用技術(shù)研究[D];南京航空航天大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 姜平;基于小生境粒子群算法的配電網(wǎng)無功規(guī)劃優(yōu)化[D];上海交通大學(xué);2013年
2 耿苗;連續(xù)分布動載荷識別的頻域方法[D];南京航空航天大學(xué);2006年
3 范文沖;加工中心主軸系統(tǒng)工作模態(tài)識別[D];昆明理工大學(xué);2005年
4 劉少兵;水工弧形鋼閘門的動態(tài)荷載識別[D];武漢理工大學(xué);2005年
5 唐旭東;連續(xù)結(jié)構(gòu)模型的隨機動載荷識別[D];南京航空航天大學(xué);2005年
6 楊林美;一種改進的遺傳算法在非線性規(guī)劃中的應(yīng)用[D];成都理工大學(xué);2003年
,本文編號:2225254
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2225254.html