WA-BT-ELM耦合模型在黃土滑坡位移預(yù)測(cè)中的應(yīng)用
發(fā)布時(shí)間:2018-08-28 20:26
【摘要】:黃土滑坡的變形演化過(guò)程往往受到多種因素的影響,呈現(xiàn)出非線(xiàn)性特征;谛〔ǚ治龊瘮(shù)(Wavelet Analysis,WA)、提升回歸樹(shù)(Boosting Regression Tree,BT),以及極限訓(xùn)練機(jī)(Extreme Learning Machine,ELM)方法,提出一種名為WA-BT-ELM的黃土滑坡位移預(yù)測(cè)新方法。該方法將非線(xiàn)性位移數(shù)據(jù)作為一時(shí)間序列,運(yùn)用小波分析函數(shù)將監(jiān)測(cè)點(diǎn)累積位移曲線(xiàn)分解為若干子小波;隨后使用提升回歸樹(shù)對(duì)所有子小波進(jìn)行重要度分析,剔除相關(guān)性不高的子小波以去掉冗雜信息;最后運(yùn)用極限訓(xùn)練機(jī),結(jié)合篩選得到的子小波對(duì)滑坡位移進(jìn)行預(yù)測(cè)分析;谠撃P蛯(duì)甘肅省永靖縣黑方臺(tái)滑坡區(qū)的滑坡位移監(jiān)測(cè)數(shù)據(jù)進(jìn)行預(yù)測(cè),得到了優(yōu)于ANN,BPNN,SVM,ELM,以及WAELM預(yù)測(cè)模型的結(jié)果,故認(rèn)為WA-BT-ELM模型是一種有效的黃土滑坡位移預(yù)測(cè)方法。
[Abstract]:The deformation and evolution process of loess landslide is often influenced by many factors, showing nonlinear characteristics. Based on wavelet analysis function (Wavelet Analysis,WA), lifting regression tree (Boosting Regression Tree,BT) and limit training machine (Extreme Learning Machine,ELM), a new method called WA-BT-ELM for predicting loess landslide displacement is proposed. In this method, the nonlinear displacement data is taken as a time series, and the cumulative displacement curve of monitoring points is decomposed into several subwavelets by wavelet analysis function, and then the importance of all subwavelets is analyzed by lifting regression tree. In order to remove the miscellaneous information, the subwavelet with low correlation is eliminated. Finally, the landslide displacement is predicted and analyzed by using the limit training machine and the selected subwavelet. Based on this model, the monitoring data of landslide displacement in Heifangtai landslide area of Yongjing County, Gansu Province are predicted, and the results are better than those of ANN,BPNN,SVM,ELM, and WAELM model. It is considered that WA-BT-ELM model is an effective method for prediction of loess landslide displacement.
【作者單位】: 成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室;山東大學(xué)(威海)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院;愛(ài)荷華大學(xué)智能系統(tǒng)研究實(shí)驗(yàn)室;
【基金】:國(guó)家重點(diǎn)基礎(chǔ)研究計(jì)劃(973計(jì)劃)資助項(xiàng)目(2014CB744703) 國(guó)家杰出青年科學(xué)基金項(xiàng)目(41225011) 教育部“長(zhǎng)江學(xué)者獎(jiǎng)勵(lì)計(jì)劃”項(xiàng)目(T2011186)
【分類(lèi)號(hào)】:P642.22
[Abstract]:The deformation and evolution process of loess landslide is often influenced by many factors, showing nonlinear characteristics. Based on wavelet analysis function (Wavelet Analysis,WA), lifting regression tree (Boosting Regression Tree,BT) and limit training machine (Extreme Learning Machine,ELM), a new method called WA-BT-ELM for predicting loess landslide displacement is proposed. In this method, the nonlinear displacement data is taken as a time series, and the cumulative displacement curve of monitoring points is decomposed into several subwavelets by wavelet analysis function, and then the importance of all subwavelets is analyzed by lifting regression tree. In order to remove the miscellaneous information, the subwavelet with low correlation is eliminated. Finally, the landslide displacement is predicted and analyzed by using the limit training machine and the selected subwavelet. Based on this model, the monitoring data of landslide displacement in Heifangtai landslide area of Yongjing County, Gansu Province are predicted, and the results are better than those of ANN,BPNN,SVM,ELM, and WAELM model. It is considered that WA-BT-ELM model is an effective method for prediction of loess landslide displacement.
【作者單位】: 成都理工大學(xué)地質(zhì)災(zāi)害防治與地質(zhì)環(huán)境保護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室;山東大學(xué)(威海)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院;愛(ài)荷華大學(xué)智能系統(tǒng)研究實(shí)驗(yàn)室;
【基金】:國(guó)家重點(diǎn)基礎(chǔ)研究計(jì)劃(973計(jì)劃)資助項(xiàng)目(2014CB744703) 國(guó)家杰出青年科學(xué)基金項(xiàng)目(41225011) 教育部“長(zhǎng)江學(xué)者獎(jiǎng)勵(lì)計(jì)劃”項(xiàng)目(T2011186)
【分類(lèi)號(hào)】:P642.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 關(guān)惠平,孫易;甘肅黃土滑坡區(qū)域性時(shí)空特性分析(英文)[J];蘭州鐵道學(xué)院學(xué)報(bào);2001年01期
2 劉悅,黃強(qiáng)兵;一種黃土滑坡滑距預(yù)測(cè)模型[J];災(zāi)害學(xué);2001年03期
3 王念秦,張世武,王紅兵;黃土滑坡勘察設(shè)計(jì)模式研究[J];中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào);2002年02期
4 李保雄;黃土滑坡臨滑預(yù)報(bào)的應(yīng)變控制方法[J];中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào);2003年02期
5 張鴻義,黃洪標(biāo),閆中學(xué);新疆新源山區(qū)黃土滑坡形成條件與防治措施[J];新疆地質(zhì);2004年03期
6 槐東升;吳江林;楊鵬;;對(duì)陜北典型的黃土滑坡工程勘察的探討[J];科技風(fēng);2009年09期
7 楊U,
本文編號(hào):2210520
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2210520.html
最近更新
教材專(zhuān)著