基于聲學人工材料的聲功能器件研究
[Abstract]:In the last ten years, acoustic artificial materials and their applications in acoustic functional devices have been widely concerned. Acoustic artificial material is a structure or medium with a complex transmission characteristic of a supernormal sound wave, which is not possessed by natural materials. The structure has a great relationship. Periodic or other special microstructural units will modulate the transmission sound wave, which shows a variety of strange physical phenomena, such as negative refraction, self collimation, ultra transmission, etc. these special physical properties break through some basic concepts of traditional acoustic theory and regulate sound freely for people. The wave provides a new way and provides new ideas and ideas for the development of a new acoustic function device. It has an important application prospect in many fields, such as acoustic stealth, acoustic hyperlens, integrated sound function device and so on. In this paper, several new acoustic function devices are proposed based on acoustic artificial materials, and the propagation of sound waves in it is systematically carried out. Theoretical numerical research and experimental verification are carried out. These new acoustic functions mainly include phase regulated sound switch and acoustic logic gate, Fano resonant acoustic sensor and unidirectional transmission of self collimated sound in the Phonon Crystal of annular flow field. The first chapter mainly reviews the research background of the related acoustic artificial materials. In the second chapter, based on the self collimation effect of acoustic wave in the two-dimensional phononic crystal, the sound switch and the acoustic logic gate are proposed in the second chapter. The line defect of the diagonal direction of the two-dimensional phononic crystal plays the role of the 3 dB beam splitter, and the output end can be controlled by adjusting the phase of the two input sound signal. The amplitude of sound wave. The function of sound switch and sound logic gate can be realized under special input phase difference. Through simulation and experimental study, the basic logic gate functions of the door, or gate, the gate, the gate and the non gate are realized. And the basic logic gates above can be cascaded to each other because of the characteristics of the non diffraction widening of the self collimation sound sound. To achieve more complex logic gates, such as NAND gate, or non gate, and the same or gate, the third chapter, based on zero density supermaterial, presents a wavelength scale variable sound switch and acoustic logic gate. The basic logic gate unit is composed of a three port acoustic waveguide filled with curled space supermaterial, and the whole logic gate size is about the work. 0.82 times of the wavelength. Due to the characteristics of zero density materials, the two incident sound wave can be overlapped with almost negligible phase delay and almost invariable wavefront at the ejection end. The amplitude of the acoustic wave can be controlled by the adjustment of the input phase difference. From the theoretical and experimental two aspects, the acoustic logic and the door, or gate, or different or different, are realized. The gate and the non gate. And more complex logic gates and logic operations, such as the non gate, or the non gate, the "I1+I2 x I3" and other logic operations can be realized by cascading the basic logic gate units with different shapes. In the fourth chapter, the self collimated sound waves in the two-dimensional phononic crystal are realized. The Fano resonator is single layer in the two-dimensional phononic crystal. It is found that the continuous and discrete states of the Fano resonance can be regulated by adjusting the structural parameters of the resonator, which makes the continuous free control of the resonance frequency of the Fano resonance and the continuous free regulation of the asymmetric line form as possible. Because of the Fano resonance line type, the Z resonance's continuous and discrete state can be regulated by the structure of a Z shaped steel column. In this chapter, the Fano resonance is applied to the detection of ethanol concentration in ethanol solution and has achieved good results in this chapter. In the fifth chapter, the unidirectional self collimation of self collimated sound waves is realized in theory. The asymmetric scattering column and the introduction of the annular flow field are constructed. The spatial symmetry of the system and the time reversal symmetry are broken to support the one-way transmission of sound waves. The one-way sound wave can also be propagated from the collimation in a certain frequency range. The acoustic energy level difference of the output sound wave can reach 30 dB. when the reverse input is used. When the flow velocity of the phononic crystal is gradually distributed, the self collimation sound wave is in it The direction of propagation will also gradually change and return to the incident interface. This sound circuit can provide a new way of thinking for the regulation of acoustic transmission. In the sixth chapter, a brief summary of the full text and the prospect of the future work are made.
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TB51
【相似文獻】
相關(guān)期刊論文 前10條
1 郁殿龍,劉耀宗,邱靜,王剛,溫激鴻,趙宏剛;一維聲子晶體振動特性與仿真[J];振動與沖擊;2005年02期
2 王留運;熊濱生;王興;;任意散射體二維聲子晶體的帶結(jié)構(gòu)計算方法[J];鄭州大學學報(工學版);2006年02期
3 曾廣武;肖偉;程遠勝;;多組聲子晶體復合結(jié)構(gòu)的隔聲性能[J];振動與沖擊;2007年01期
4 肖偉;曾廣武;;基于波傳播法的一維聲子晶體禁帶[J];機械工程學報;2007年01期
5 陳源;周敬東;周明剛;劉幺和;;周期性結(jié)構(gòu)聲子晶體研究概況[J];中國艦船研究;2007年04期
6 鄭玲;李以農(nóng);A Baz;;一維聲子晶體的振動特性與實驗研究[J];振動工程學報;2007年04期
7 徐偉;;二維聲子晶體帶隙影響因素研究[J];科學技術(shù)與工程;2008年05期
8 王海峰;凡友華;王海洋;周夢平;;多層一維聲子晶體在建筑隔聲中應(yīng)用分析[J];中國建材科技;2008年04期
9 羅曉華;;彈性波與周期介質(zhì)相互作用及聲子晶體研究現(xiàn)狀[J];東莞理工學院學報;2008年05期
10 劉啟能;;一維固-液平板聲子晶體中彈性波的模式和帶隙[J];振動與沖擊;2010年06期
相關(guān)會議論文 前10條
1 王健君;;通過組裝膠體顆粒實現(xiàn)特超聲子晶體[A];中國化學會第27屆學術(shù)年會第04分會場摘要集[C];2010年
2 陳久久;秦波;程建春;;二維表面波聲子晶體的研究[A];中國聲學學會2005年青年學術(shù)會議[CYCA'05]論文集[C];2005年
3 許震宇;沈琦;龔益玲;;一維聲子晶體的數(shù)值和實驗研究[A];中國力學學會學術(shù)大會'2005論文摘要集(下)[C];2005年
4 劉曉峰;汪越勝;;夾層聲子晶體板的缺陷態(tài)研究[A];中國力學大會——2013論文摘要集[C];2013年
5 吳英家;方慶川;凡友華;;新型聲學材料——聲子晶體的低頻高效隔聲性能研究[A];中國環(huán)境科學學會2009年學術(shù)年會論文集(第二卷)[C];2009年
6 徐偉;汪越勝;;二維聲子晶體的等效非局部連續(xù)介質(zhì)模型[A];慶祝中國力學學會成立50周年暨中國力學學會學術(shù)大會’2007論文摘要集(下)[C];2007年
7 劉耀宗;孟浩;李黎;溫激鴻;;基于遺傳算法的聲子晶體梁振動傳輸特性優(yōu)化設(shè)計[A];第九屆全國振動理論及應(yīng)用學術(shù)會議論文集[C];2007年
8 祝雪豐;闞威威;程建春;;采用超晶格平面波展開和諧頻響應(yīng)法對硅基蘭姆波聲子晶體的研究[A];中國聲學學會2009年青年學術(shù)會議[CYCA’09]論文集[C];2009年
9 周小微;程建春;;二維聲子晶體中低頻彈性波傳播的有效速度[A];中國聲學學會2009年青年學術(shù)會議[CYCA’09]論文集[C];2009年
10 汪越勝;;聲子晶體波傳播特性的參數(shù)表征及計算方法[A];中國力學學會學術(shù)大會'2009論文摘要集[C];2009年
相關(guān)重要報紙文章 前1條
1 記者 張建列 通訊員 馮春;利用聲波實現(xiàn)“隔空探物”[N];廣東科技報;2014年
相關(guān)博士學位論文 前10條
1 鄧科;聲子晶體及聲超常材料的特性調(diào)控與功能設(shè)計[D];武漢大學;2010年
2 闞威威;聲人工結(jié)構(gòu)對聲波的調(diào)控研究[D];南京大學;2015年
3 李鵬;聲子晶體點缺陷模式及其傳感特性研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2015年
4 王敬時;人工復合材料中聲表面波傳輸特性研究[D];南京大學;2011年
5 黃洋;周期結(jié)構(gòu)中波傳播行為的主動和被動調(diào)控[D];浙江大學;2015年
6 張洪波;聲子晶體板的帶隙調(diào)控及減振性能的研究[D];湖南大學;2016年
7 趙浩江;聲子晶體薄板結(jié)構(gòu)及材料參數(shù)對振動帶隙特性的影響分析[D];哈爾濱工業(yè)大學;2015年
8 張婷;基于聲學人工材料的聲功能器件研究[D];南京大學;2016年
9 肖偉;聲子晶體型周期復合結(jié)構(gòu)禁帶特性研究[D];華中科技大學;2007年
10 顧永偉;局域共振聲子晶體的優(yōu)化設(shè)計與模擬[D];上海交通大學;2009年
相關(guān)碩士學位論文 前10條
1 王海洋;二維組合聲子晶體薄板振動性能研究[D];哈爾濱工業(yè)大學;2008年
2 沈耀輝;二維三組元局域共振型聲子晶體穩(wěn)態(tài)響應(yīng)研究[D];哈爾濱工業(yè)大學;2010年
3 邱春印;二維聲子晶體的層間多重散射理論及聲子晶體相關(guān)的應(yīng)用設(shè)計[D];武漢大學;2005年
4 馮昆;二維三組元聲子晶體低頻穩(wěn)態(tài)響應(yīng)探究[D];哈爾濱工業(yè)大學;2011年
5 王連坤;用于聲子晶體檢測的光外差測量技術(shù)研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2010年
6 武維維;一維聲子晶體透射譜的理論研究[D];華中科技大學;2011年
7 徐永剛;周期與非周期性一維聲子晶體能帶特性研究[D];陜西師范大學;2013年
8 胡愛珍;聲子晶體缺陷態(tài)的溫度控制及蘭姆波禁帶的低頻調(diào)節(jié)[D];廣東工業(yè)大學;2015年
9 徐超偉;基于鈦酸鍶鋇鐵電陶瓷的溫度調(diào)控型聲子晶體研究[D];湘潭大學;2015年
10 朱興文;一維固液聲子晶體的禁帶特性研究[D];蘭州交通大學;2015年
,本文編號:2139570
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2139570.html